COVID-19 Living Evidence Synthesis #6
(Version 21: 06 October 2021)

Question

What is the efficacy and effectiveness of available COVID-19 vaccines for variants of concern?

Findings

For vaccine effectiveness in variants of concern (VOC), we present a visual summary of evidence in Table 1 and detailed statements in Table 2.

Methods are presented in Box 1 and in the following appendices:
1) reference list
2) glossary
3) data-extraction template
4) process for assigning variant of concern to studies
5) research question and critical appraisal process
6) detailed description of the narrative summary statement.

Overall, 221 studies were appraised and 85 used to complete this summary. The reasons for excluding the remaining 136 studies are reported in the second section of Appendix 2.

6 new studies have been added since the previous edition of this living evidence synthesis, all of which are signaled by a last-updated date of 06 October 2021 (highlighted in yellow). The new studies included results for VOC Alpha1 [B.1.1.7] (2), VOC Beta to VOC Delta [B.1.351] (1); VOC Alpha to VOC Delta (2), and VOC Delta [B.1.617.2] (1).

Box 1: Our approach

We retrieved candidate studies and updates to living evidence syntheses on vaccine effectiveness using the following mechanisms: 1) PubMed via COVID-19+ Evidence Alerts; 2) systematic scanning of pre-print servers; 3) updates to the COVID-END inventory of best evidence syntheses; and 4) cross-check with updates from the VESPa team. We included studies and updates to living evidence syntheses identified up to two days before the version release date. We did not include press releases unless a preprint was available. A full list of included and excluded studies is provided in Appendix 1. A glossary is provided in Appendix 2.

Prioritized outcome Measures: Infection, severe disease (as defined by the study investigators), death, and transmission.

Data extraction: We prioritized variant-confirmed and vaccine-specific data over total study population data (variant assumed and/or vaccine unspecified). We extracted data from each study in duplicate using the template provided in Appendix 3. Relevance to VOC is determined directly, when reported by study authors, or indirectly where reasonable assumptions can be made about the variant prevalent in the jurisdiction at the time of the study as described in Appendix 4.

Critical appraisal: We assessed risk of bias, direction of effect, and certainty of evidence. Risk of bias: assessed in duplicate for individual studies using an adapted version of ROBINS-I. Direction of vaccine effect: “prevented” or “protects” was applied to mean estimates or range of mean estimates of effect that are greater than or equal to 50% (the lowest acceptable limit for vaccine effectiveness as determined by WHO). Certainty of evidence: assessed for the collection of studies for each vaccine according to variant of concern using a modified version of GRADE. Details of the research question for this synopsis and the critical appraisal process are provided in Appendix 5.

Summaries: We summarized the evidence by presenting narrative evidence profiles across studies, with or without pooling, as appropriate. A template for the summary statements used on page 1 under “Findings” and in Table 1 under each VOC is provided in Appendix 6.

We update this document every Wednesday and post it on the COVID-END website.

1 As of August 9, inclusion of Alpha studies may be temporarily delayed to permit resource allocation to Delta.
Pfizer/Comirnaty [BNT162b2]

We have moderate certainty evidence that 2 doses of BNT162b2 prevented infection (range of mean estimates: 70 to 97%), prevented severe disease (range of mean estimates: 92 to 98%), prevented death (range of mean estimates: 91 to 99%), and reduced transmission of VOC Alpha to close contacts (range of mean estimates: 65 to 80%).

We have moderate certainty evidence that 2 doses of BNT162b2 prevented symptomatic infection from VOC Beta (range of mean estimates: 84 to 88%).

We have low certainty evidence that 2 doses of BNT162b2 prevented infection from VOC Delta (range of mean estimates: 42 to 80%); moderate certainty evidence it prevented symptomatic infection from VOC Delta (range of mean estimates: 62 to 94%); and low certainty evidence it prevented severe, critical, or fatal disease from VOC Delta (range of mean estimates: 93 to 98%).

We have low certainty evidence that BNT162b2 prevented symptomatic disease from VOC Gamma (range of mean estimates: 84 to 88% - 2 reports from the same study population).

Moderna/Spikevax [mRNA-1273]

We have moderate certainty evidence that 2 doses of mRNA-1273 prevented infection from VOC Alpha (range of mean estimates: 86 to 100%) and low certainty evidence it prevented infection from VOC Beta (96.4% [95% CI, 92 to 99] – 1 Obs). We have low certainty evidence that it prevented severe, critical, or fatal disease from VOC Alpha (combined with Beta) (95.7% [95% CI, 73.4 to 99.9] – 1 Obs).

We have moderate certainty evidence that 2 doses of mRNA-1273 prevented infection from VOC Delta (range of mean estimates: 74 to 86%) and low certainty evidence that it prevented severe, critical, or fatal disease (range of mean estimate: 93 to 100%).

We have low certainty evidence that 2 doses of mRNA-1273 prevented symptomatic infection from VOC Delta (90.3% [95% CI, 67.2 to 97.1] – 1 Obs).

We have low certainty evidence that 2 doses of mRNA-1273 prevented symptomatic infection from VOC Gamma (88% [95% CI, 61 to 96] – 1 Obs).

AstraZeneca/Vaxzevria [ChAdOx1]

We have moderate certainty evidence that 2 doses of ChAdOx1 prevented infection from VOC Alpha (range of mean estimates: 62 to 79%) and moderate certainty evidence that it provided limited protection from infection by VOC Beta (10.4% [95% CI, -76.8 to 54.8]- 1 RCT).

We have low certainty evidence that 2 doses of ChAdOx1 prevented infection from VOC Delta (range of mean estimates: 60 to 67%) and moderate certainty evidence it prevented symptomatic infection from VOC Delta (range of mean estimates: 61 to 70%). We have low certainty evidence that 2 doses of ChAdOx1 prevented ICU admission (99.2% [95% CI, 97.6 to 99.7] – 1 Obs*) and low certainty evidence it prevented death (range of mean estimates: 97 to 99.6%).

We have low certainty evidence one dose of ChAdOx1 provided limited protection against symptomatic infection against VOC Gamma (48% [95% CI, 28 to 63] – 1 Obs). *combined with Alpha
Other vaccines

We have moderate certainty evidence that Johnson & Johnson [AD26.COV2.S] prevented severe disease from VOC Beta (81.7% [95% CI, 46.2 to 95.4] - 1 RCT). We have low certainty evidence that AD26.COV2.S prevented infection from VOC Delta (51% [95% CI, -2 to 76] – 1 Obs).

We have moderate certainty evidence that 2 doses of Novavax [NVX-Co2373] prevented symptomatic infection from VOC Alpha (86.3% [95% CI, 71.3 to 93.5] - 1 RCT) and moderate certainty evidence that it prevented symptomatic infection from VOC Beta (43% [95% CI, -9.8 to 70.4] - 1 RCT).

We low certainty evidence that 2 doses of Sinovac [CoronaVac] prevented symptomatic infection due to VOC Delta (59% [95% CI, 16 to 81.6] – 1 Obs) and prevented severe infection (range of mean estimates: 89 to 100%) due to VOC Delta.

We have low certainty evidence that 2 doses of CoronaVac prevented infection from VOC Gamma (65.9% [95% CI, 65.2 to 66.6] – 1 Obs).

We have low certainty evidence that 2 doses of Sinopharm [BBIBP-CorV] prevented ICU admission (95.4% [95% CI, 94.6 to 96.2] – 1 Obs*) from VOC Delta and low certainty evidence it prevented death (94.3% [95% CI, 93.1 to 95.4] – 1 Obs*).

We have low certainty evidence that 2 doses of Gamaleya [Sputnik V] prevented ICU admission (100% [95% CI, 99.2 to 100] – 1 Obs*) from VOC Delta and low certainty evidence it prevented death (99.5% [95% CI, 98.5 to 99.9] – 1 Obs*).

Combinations of vaccines

We have low certainty evidence that 1 dose of AstraZeneca [ChAdOx1] followed by 1 dose of Pfizer [BNT162b2] or Moderna [mRNA-1273] prevented infection by VOC Alpha (88% [95% CI, 83 to 92] – 1 Obs).
Table 1: Visual summary of evidence for COVID-19 vaccines for variants of concern

Percentages indicate level of effectiveness from 0% (no effect) to 100% (full protection): ranges of estimated means are provided when ≥ 1 study is available; estimated mean value is provided for single studies

Colour indicates level of certainty based on the evidence

High certainty evidence = pooling of moderate to high quality RCTs or pooling of observational studies with low risk of bias and with consistent findings

Moderate certainty evidence = single RCT of moderate to high quality or ≥ one observational study with low to moderate risk of bias and with at least partially consistent findings

Low certainty evidence = single RCT of low quality or single observational study of any quality or multiple low or moderate observational studies with inconsistent findings

<table>
<thead>
<tr>
<th>Outcome (and vaccine)</th>
<th>Vaccine Effectiveness (2 doses unless otherwise stated) for each combination of vaccine, variant, and outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alpha</td>
</tr>
<tr>
<td>Any Infection</td>
<td></td>
</tr>
<tr>
<td>Pfizer</td>
<td>70 to 97%</td>
</tr>
<tr>
<td>Moderna</td>
<td>86 to 100%</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td></td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>51%</td>
</tr>
<tr>
<td>Novavax</td>
<td>66%</td>
</tr>
<tr>
<td>CoronaVac</td>
<td></td>
</tr>
<tr>
<td>AZ/PF or MOD</td>
<td>88%</td>
</tr>
<tr>
<td>Symptomatic Infection (reported when data on “any infection” is limited)</td>
<td></td>
</tr>
<tr>
<td>Pfizer</td>
<td>84 to 88%</td>
</tr>
<tr>
<td>Moderna</td>
<td>88%</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>48%*</td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td></td>
</tr>
<tr>
<td>Novavax</td>
<td>86%</td>
</tr>
<tr>
<td>CoronaVac</td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
</tr>
<tr>
<td>Pfizer</td>
<td>65 to 80%</td>
</tr>
<tr>
<td>Moderna</td>
<td></td>
</tr>
<tr>
<td>AstraZeneca</td>
<td></td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td></td>
</tr>
<tr>
<td>Novavax</td>
<td></td>
</tr>
<tr>
<td>CoronaVac</td>
<td></td>
</tr>
<tr>
<td>Severe Disease (may include death for some studies)</td>
<td></td>
</tr>
<tr>
<td>Pfizer</td>
<td>92 to 98%</td>
</tr>
<tr>
<td>Moderna</td>
<td>96%</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td></td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>82%*</td>
</tr>
<tr>
<td>Novavax</td>
<td></td>
</tr>
<tr>
<td>CoronaVac</td>
<td></td>
</tr>
<tr>
<td>Sinopharm</td>
<td></td>
</tr>
<tr>
<td>Outcome (and vaccine)</td>
<td>Vaccine Effectiveness (2 doses unless otherwise stated) for each combination of vaccine, variant, and outcome</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Alpha</td>
</tr>
<tr>
<td>Death</td>
<td></td>
</tr>
<tr>
<td>Pfizer</td>
<td></td>
</tr>
<tr>
<td>Moderna</td>
<td></td>
</tr>
<tr>
<td>AstraZeneca</td>
<td></td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td></td>
</tr>
<tr>
<td>Novavax</td>
<td></td>
</tr>
<tr>
<td>CoronaVac</td>
<td></td>
</tr>
<tr>
<td>Sinopharm</td>
<td></td>
</tr>
<tr>
<td>Sputnik V</td>
<td></td>
</tr>
</tbody>
</table>

*single dose

**mean estimate of effect less than the lowest acceptable limit for vaccine effectiveness as determined by WHO

AZ, AstraZeneca; MOD, Moderna; PF, Pfizer
Table 2: Key findings about vaccine effectiveness

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Effectiveness</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer/BioNTech Comirnaty [BNT162b2]</td>
<td>From COVID-NMA</td>
<td>Compared to placebo, vaccination with BNT162b2 reduces the incidence of symptomatic cases of COVID-19 and probably reduces severe and critical disease substantially, although there remains uncertainty about the effect on mortality; it may increase the incidence of severe adverse events. Review of RCTs (AMSTAR 10/11); last search date 2021-09-03; GRADE evidence profile updated on 2021-09-17. [BNT162b2 to complete vaccination scheme started with Astra Zeneca vaccine] Synthesis pending. Review of RCTs (AMSTAR 8/9); last search date 2021-09-17. [BNT162b2 to complete vaccination scheme started with Astra Zeneca at 28 days vs two doses Astra Zeneca separated by 28 days] Compared to vaccination with Astra Zeneca vaccine, having a second dose of BNT16b2 after a first dose of Astra Zeneca may not increase the risk of any adverse event, while the incidence of serious adverse events is uncertain. Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated on 2021-07-19.</td>
</tr>
</tbody>
</table>

By variant of concern

- **Alpha**
 - BNT162b2 provided protection against VOC Alpha for the following outcomes 14 days after 1st dose:
 - 46 to 78% from infection (RME)
 - BNT162b2 provided protection against VOC Alpha for the following outcomes 42 to 49 days after at least one dose:
 - 93% (95% CI, 89 to 96) from death
 - BNT162b2 provided protection against VOC Alpha for the following outcomes at least 7 days after 2nd dose:
 - 70 to 97% from infection (RME)
 - 87% (95% CI, 74 to 93) from symptomatic infection
 - 92 to 98% from severe disease (RME)
 - 90% (86 to 93) from ICU admission
 - 91 to 99% from death (RME)
 (24 Obs)
 [1][2][3][8][9][10][15][21][22][23][28][31][34][36][41][43][53][60][74][75][79][88][94][99]; last update 2021-10-06

- **Alpha, VE over time**
 - BNT162b2 provided protection against symptomatic infection by VOC Alpha when the 2nd dose was given the following number of days after 1st dose:
 - 77% (95% CI, 66 to 85) at 19-29 days (age 65 to 79)
 - 86% (95% CI, 70 to 94) at 85+ days (age 65 to 79)
 - BNT162b2 provided protection against hospitalization by VOC Alpha for the following number of days after the 2nd dose:
<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Effectiveness</th>
<th>Findings</th>
<th>Last Update</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 92% (95% CI, 88 to 94) at 28 to 41 days</td>
<td>(2 Obs) [79][99]; last update 2021-10-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 86% (95% CI, 74 to 93) at ≥112 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beta</td>
<td>BNT162b2 provided protection against VOC Beta (or Gamma) for the following outcomes 35-41 days after 1st dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 43% (95% CI, 22 to 59) from symptomatic infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNT162b2 provided protection against VOC Beta (or Gamma) for the following outcome 7 days after 2nd dose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 84 to 88% from symptomatic infection (RME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 95% (95% CI, 81 to 99) from hospitalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNT162b2 provided protection against VOC Beta for the following outcomes ≥ 14 days after 2nd dose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 75% (95% CI, 70.5 to 78.9) from infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 100% (95% CI, 73.7 to 100) from severe, critical, or fatal disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2 Obs – 3 refs)[23][36][47]; last update 2021-07-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beta to Delta</td>
<td>BNT162b2 provided protection against infection by VOC Beta to VOC Delta for the following number of days after the 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 65.8% (95% CI, 63.8 to 67.7) at 5 to 9 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 29.7% (95% CI, 21.7 to 36.9) at 15 to 19 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0% (95% CI, 0 to 0) 20 to 24 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNT162b2 provided protection against hospitalization or death by VOC Beta to VOC Delta for the following number of days after the 2nd dose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 94.2% (95% CI, 91.0 to 96.5) at 5 to 9 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 86.4% (95% CI, 69.9 to 94.8) at 15 to 19 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 95.3% (95% CI, 70.5 to 99.9) at 20 to 24 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 Obs) [98]; last update 2021-10-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alpha to Delta</td>
<td>BNT162b2 or mRNA-1273 provided protection against VOC Alpha to Delta for the following outcomes ≥ 14 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 92% (95% CI, 85 to 96) from severe disease in people with no risk conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 72% (95% CI, 51 to 84) from severe disease with very high risk conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNT162b2 showed OR 1.61 (95% CI, 1.45 to 1.79) for infection comparing fully vaccinated Jan to Feb (VOC Alpha) vs fully vaccinated Mar to May (VOC Delta).</td>
<td>(2 Obs) [95][96]; last update 2021-10-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Delta</td>
<td>BNT162b2 provided protection against VOC Delta for the following outcome at least 14 to 21 days after 1st dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 30 to 65% from infection (RME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 33 to 47.5% from symptomatic infection (RME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 87 to 94% from hospitalization (RME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 100% (95% CI not reported) from severe, critical or fatal disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>BNT162b2</td>
<td>provided protection against VOC Delta for the following outcome at least 7 days after 2nd dose:</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 42 to 80% from infection (RME)</td>
<td>• 42 to 80% from infection (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 62 to 93.7% from symptomatic infection (RME)</td>
<td>• 62 to 93.7% from symptomatic infection (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 96% (95% CI, 86 to 99) from hospitalization</td>
<td>• 96% (95% CI, 86 to 99) from hospitalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 93 to 98% from severe, critical, or fatal disease (RME)</td>
<td>• 93 to 98% from severe, critical, or fatal disease (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15 Obs)</td>
<td>(15 Obs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[29][38][42][47][57][63][64][65][71][74][76][84][88][92][97]; last update 2021-10-06</td>
<td>[29][38][42][47][57][63][64][65][71][74][76][84][88][92][97]; last update 2021-10-06</td>
<td></td>
</tr>
<tr>
<td>• Delta, VE over time</td>
<td>BNT162b2 showed a higher risk of infection by VOC Delta in participants fully vaccinated (≥14 days after 2nd dose) longer than or equal to 146 days ago vs fully vaccinated less than 146 days ago [OR 2.06 (95% CI, 1.69 to 2.51)]</td>
<td>BNT162b2 showed a higher risk of infection by VOC Delta in participants fully vaccinated (≥14 days after 2nd dose) longer than or equal to 146 days ago vs fully vaccinated less than 146 days ago [OR 2.06 (95% CI, 1.69 to 2.51)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 Obs) [69]; last update 2021-08-25</td>
<td>(1 Obs) [69]; last update 2021-08-25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNT162b2 provided protection against infection by VOC Delta for the following number of days after 2nd dose:</td>
<td>BNT162b2 provided protection against infection by VOC Delta for the following number of days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 93% (95% CI, 85 to 87) at 7 to 30 days</td>
<td>• 93% (95% CI, 85 to 87) at 7 to 30 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 53% (95% CI, 39 to 65) at ≥127 days</td>
<td>• 53% (95% CI, 39 to 65) at ≥127 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNT162b2 provided protection against infection by VOC Delta 5 months after 2nd dose:</td>
<td>BNT162b2 provided protection against infection by VOC Delta 5 months after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 50% (95% CI, 45 to 55) - age 16 to 39</td>
<td>• 50% (95% CI, 45 to 55) - age 16 to 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 58% (95% CI, 54 to 62) - age 40 to 59</td>
<td>• 58% (95% CI, 54 to 62) - age 40 to 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 57% (95% CI, 52 to 62) - age 60+</td>
<td>• 57% (95% CI, 52 to 62) - age 60+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNT162b2 provided protection against symptomatic infection by VOC Delta for the following number of days after 2nd dose:</td>
<td>BNT162b2 provided protection against symptomatic infection by VOC Delta for the following number of days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 62.7% (95% CI, 61.7 to 63.8) – at 1 week</td>
<td>• 62.7% (95% CI, 61.7 to 63.8) – at 1 week</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 47.3% (95% CI, 45 to 49.6) – at 20+ weeks</td>
<td>• 47.3% (95% CI, 45 to 49.6) – at 20+ weeks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNT162b2 provided protection against severe, critical, or fatal disease by VOC Delta 5 months after 2nd dose:</td>
<td>BNT162b2 provided protection against severe, critical, or fatal disease by VOC Delta 5 months after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 94% (95% CI, 87 to 97) - age 40 to 59</td>
<td>• 94% (95% CI, 87 to 97) - age 40 to 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 86% (95% CI, 82 to 90) - age 60+</td>
<td>• 86% (95% CI, 82 to 90) - age 60+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3 Obs) [76][84][92]; last update 2021-09-22</td>
<td>(3 Obs) [76][84][92]; last update 2021-09-22</td>
<td></td>
</tr>
<tr>
<td>• Delta, prior infection</td>
<td>BNT162b2 (2 doses) provided protection against VOC Delta for the following outcomes:</td>
<td>BNT162b2 (2 doses) provided protection against VOC Delta for the following outcomes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OR 13.06 (95% CI, 8.08 to 21.11) against infection compared to previously infected (unvaccinated)</td>
<td>• OR 13.06 (95% CI, 8.08 to 21.11) against infection compared to previously infected (unvaccinated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OR 27.02 (95% CI, 12.7 to 57.5) against symptomatic infection compared to previously infected (unvaccinated)</td>
<td>• OR 27.02 (95% CI, 12.7 to 57.5) against symptomatic infection compared to previously infected (unvaccinated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 Obs) [73]; last update 2021-09-02</td>
<td>(1 Obs) [73]; last update 2021-09-02</td>
<td></td>
</tr>
<tr>
<td>• Delta, 3 doses</td>
<td>BNT162b2 (3 doses) provided protection against infection by VOC Delta compared to 2 doses:</td>
<td>BNT162b2 (3 doses) provided protection against infection by VOC Delta compared to 2 doses:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3% (95% CI, -5 to 10) – at 0 to 6 days after 3rd dose</td>
<td>• 3% (95% CI, -5 to 10) – at 0 to 6 days after 3rd dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 84.0% (95% CI, 79 to 88) – at 14 to 20 days after 3rd dose</td>
<td>• 84.0% (95% CI, 79 to 88) – at 14 to 20 days after 3rd dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 Obs) [93]; last update 2021-09-22</td>
<td>(1 Obs) [93]; last update 2021-09-22</td>
<td></td>
</tr>
<tr>
<td>• Gamma</td>
<td>BNT162b2 provided protection against VOC Gamma (or Beta) for the following outcomes 35-41 days after 1st dose:</td>
<td>BNT162b2 provided protection against VOC Gamma (or Beta) for the following outcomes 35-41 days after 1st dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>• 43% (95% CI, 22 to 59) from symptomatic infection BNT162b2 provided protection against VOC Gamma (or Beta) for the following outcome 7 days after 2nd dose:</td>
<td>• 84 to 88% from symptomatic infection (RME)</td>
<td>BNT162b2 provided protection against VOC Gamma (or Beta) for the following outcome 7 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td>• 95% (95% CI, 81 to 99) from hospitalization (1 Obs – 2 refs)</td>
<td>• 84 to 88% from symptomatic infection (RME)</td>
<td>last update 2021-07-14</td>
<td></td>
</tr>
<tr>
<td>• Epsilon</td>
<td>BNT162b2 provided protection against VOC Epsilon for the following outcome 15 days after 1st dose:</td>
<td>BNT162b2 provided protection against VOC Epsilon for the following outcome 15 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td>• 58.9% (95% CI, −9.7 to 84.5) from infection</td>
<td>• 85.7% (67.2 to 93.9) from infection</td>
<td>(2 Obs) [8][31]; last update 2021-06-08</td>
<td></td>
</tr>
<tr>
<td>By special population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• HCW, Alpha</td>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes 14 to 21 days after 1st dose:</td>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes at least 7 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td>• 64 to 84% from infection (RME)</td>
<td>• 80 to 96% from infection (RME)</td>
<td>• 86% (95% CI, 69 to 93) from asymptomatic infection [25]</td>
<td></td>
</tr>
<tr>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes at least 7 days after 2nd dose:</td>
<td>BNT162b2 provided protection against infection by VOC Alpha for the following number of days after 2nd dose:</td>
<td>last update 2021-09-22</td>
<td></td>
</tr>
<tr>
<td>• 85% (95% CI, 68 to 93) at 14 to 119 days</td>
<td>• 85% (95% CI, 68 to 93) at 14 to 119 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 73% (95% CI, 49 to 86) ≥150 days</td>
<td>• 73% (95% CI, 49 to 86) ≥150 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7 Obs)[11][26][32][45][46][56][81]; last update 2021-09-22</td>
<td>(7 Obs)[11][26][32][45][46][56][81]; last update 2021-09-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Over 65 years, requiring support at home, Alpha</td>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes 7 days after 2nd dose:</td>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes >14 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td>• 86% (95% CI, 78 to 91) from infection</td>
<td>• 86% (95% CI, 78 to 91) from infection</td>
<td>• 94% (95% CI, 73 to 99) from symptomatic infection</td>
<td></td>
</tr>
<tr>
<td>• 97% (95% CI, 88 to 99) from death</td>
<td>• 97% (95% CI, 88 to 99) from death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 Obs)[32]; last update 2021-07-07</td>
<td>(1 Obs)[32]; last update 2021-07-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Over 70 years, Alpha</td>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes at least 21 days after 1st dose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 41 to 67% from infection (RME)</td>
<td>• 41 to 67% from infection (RME)</td>
<td>last update 2021-10-06</td>
<td></td>
</tr>
<tr>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes at least 7 days after 2nd dose:</td>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes at least 7 days after 2nd dose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 75 to 90% from infection (RME)</td>
<td>• 75 to 90% from infection (RME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3 Obs)[28][35][51]; last update 2021-10-06</td>
<td>(3 Obs)[28][35][51]; last update 2021-10-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Over 80 years, Alpha</td>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes at least 14 days after 1st dose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 42 to 55.2% from infection (RME)</td>
<td>• 42 to 55.2% from infection (RME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 71 to 81% from hospitalization (RME)</td>
<td>• 71 to 81% from hospitalization (RME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes >14 days after 2nd dose:</td>
<td>BNT162b2 provided protection against VOC Alpha for the following outcomes >14 days after 2nd dose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 94% (95% CI, 73 to 99) from symptomatic infection</td>
<td>• 94% (95% CI, 73 to 99) from symptomatic infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
| | | • 93% (95% CI, 89 to 95) from hospitalization
BNT162b2 provided protection against death by VOC Alpha for the following number of days after 2nd dose:
• 86% (95% CI, 68 to 93) at 14 to 41 days
• 74% (95% CI, 60 to 83) ≥98 days (5 Obs) [13][20][55][79][83]; last update 2021-09-22 |
| • LTC, Alpha | BNT162b2 provided protection against VOC Alpha for the following outcomes 7 days after 2nd dose:
• 53% (95% CI, 29 to 69) from infection
• 89% (95% CI, 81 to 93) from death (1 Obs) [32]; last update 2021-10-06 |
| • Pregnant, Alpha | BNT162b2 provided protection against VOC Alpha for the following outcomes at least 28 days after 1st dose:
BNT162b2 provided protection against VOC Alpha for the following outcomes 7 to 56 days after 2nd dose:
• 86.1% (95% CI, 82.4 to 89.1) from infection
• 89% (95% CI, 43 to 100) from hospitalization (2 Obs) [32][54]; last update 2021-07-28 |
| • Previously infected, Alpha or Beta | BNT162b2 (2 doses) after prior infection provided protection against VOC Alpha (or Beta) for the following outcomes:
• 85% (95% CI, 80 to 89) against re-infection compared to BNT162b2 without prior infection (1 Obs) [72]; last update 2021-08-25 |
| • Immunosuppressed, renal transplant, Alpha or Beta | BNT162b2 or mRNA-1273 provided protection against infection by VOC Alpha or Beta at the following number of days after 2nd dose:
• 46.6% (95% CI, 0.0 to 73.7) ≥14 days
• 66.0% (95% CI, 21.3 to 85.3) ≥42 days
• 73.9% (95% CI, 33 to 98.9) ≥56 days
BNT162b2 or mRNA-1273 provided protection against severe, critical, or fatal disease by VOC Alpha or Beta at the following number of days after 2nd dose:
• 72.3% (95% CI, 0.0 to 90.9) ≥14 days
• 85% (95% CI, 35.7 to 96.5) ≥42 days
• 83.8% (95% CI, 31.3 to 96.2) ≥56 days (1 Obs) [90]; last update 2021-09-22 |
| • Over 70 years, Gamma | BNT162b2 provided protection against VOC Gamma for the following outcomes ≥ 21 days after 1st dose:
• 61% (95% CI, 45 to 72) from infection (1 Obs) [33]; last update 2021-07-07 |
| • HCW, Delta | BNT162b2 provided protection against VOC Delta for the following outcomes ≥ 14 days after 2nd dose:
• 66% (95% CI, 26 to 84) (1 Obs) [81]; last update 2021-09-22 |
<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Effectiveness</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HCW, Beta or Gamma</td>
<td>BNT162b2 provided protection against VOC Beta or</td>
<td>• 37.2% (95% CI, 16.6 to 52.7) from infection (1 Obs) [27]; last update 2021-06-01</td>
</tr>
<tr>
<td></td>
<td>Gamma for the following outcomes 14 to 42 days</td>
<td>BNT162b2 provided protection against VOC Beta or Gamma for the following outcome 7 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td>after 1st dose:</td>
<td>• 79.2% (95% CI, 64.6 to 87.8) from infection (1 Obs) [27]; last update 2021-06-01</td>
</tr>
<tr>
<td>• LTC, Gamma (residents)</td>
<td>BNT162b2 (or mRNA-1273) provided protection against</td>
<td>BNT162b2 (or mRNA-1273) provided protection against VOC Gamma 14 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td>VOC Gamma for the following outcomes 7 days</td>
<td>• 52.5% (95% CI, 26.9 to 69.1) against infection (1 Obs) [61]; last update 2021-08-11</td>
</tr>
<tr>
<td></td>
<td>after 2nd dose:</td>
<td>• 78.6% (95% CI, 47.9 to 91.2) against severe disease (1 Obs) [61]; last update 2021-08-11</td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Household of vaccinated</td>
<td>BNT162b2 reduced transmission of VOC Alpha from a</td>
<td>BNT162b2 reduced transmission of VOC Alpha from a vaccinated index case (14 to 21 days after 1st dose) to household contacts compared to households of unvaccinated index cases:</td>
</tr>
<tr>
<td>individual, Alpha</td>
<td>vaccinated index case (14 to 21 days after 1st</td>
<td>• 30 to 49% from infection (RME)</td>
</tr>
<tr>
<td></td>
<td>dose) to household contacts compared to households</td>
<td>BNT162b2 reduced transmission of VOC Alpha from a vaccinated HCW (10 weeks after 1st dose) to household spouse:</td>
</tr>
<tr>
<td></td>
<td>of unvaccinated index cases:</td>
<td>• 42.9% (95% CI, 22.3 to 58.1) from infection (3 Obs) [6][14][33]; last update 2021-07-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Vaccinated close contacts</td>
<td>BNT162b2 reduced transmission to close contacts</td>
<td>BNT162b2 reduced transmission to close contacts COVID+ index cases at least 7 to 14 days after 2nd dose:</td>
</tr>
<tr>
<td>of COVID+, Alpha</td>
<td>of COVID+ index cases at least 7 to 14 days after</td>
<td>• 65 to 80% from infection (RME)</td>
</tr>
<tr>
<td></td>
<td>2nd dose:</td>
<td>• 94% (95% CI, 60 to 99) from hospitalization (2 Obs)[40][48]; last update 2021-07-14</td>
</tr>
<tr>
<td>• Vaccinated HCW vs unvaccinated community, Beta and Gamma</td>
<td>BNT162b2 reduced transmission of VOC Beta or Gamma from vaccinated HCW compared to unvaccinated community ≥14 days after 1st dose:</td>
<td>BNT162b2 reduced transmission of VOC Beta or Gamma from vaccinated HCW compared to unvaccinated community ≥7 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td>from vaccinated HCW compared to unvaccinated</td>
<td>• 54.7% (95% CI, 44.8 to 62.9) from infection (1 Obs) [27]; last update 2021-06-08</td>
</tr>
<tr>
<td></td>
<td>community ≥14 days after 1st dose:</td>
<td>BNT162b2 reduced transmission of VOC Beta or Gamma from vaccinated HCW compared to unvaccinated community ≥7 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 84.8% (95% CI, 75.2 to 90.7) from infection (1 Obs) [27]; last update 2021-06-08</td>
</tr>
<tr>
<td>Moderna</td>
<td>From COVID-NMA</td>
<td>Compared to placebo, vaccination with mRNA-1723 probably reduces the incidence of symptomatic cases of COVID-19 substantially and it may reduce severe disease, while the incidence of serious adverse events is probably not increased. Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated on 2021-01-25</td>
</tr>
<tr>
<td>Spikevax</td>
<td>[mRNA-1723]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>By variant of concern</td>
</tr>
<tr>
<td>• Alpha</td>
<td>mRNA-1273 provided protection against VOC Alpha</td>
<td>mRNA-1273 provided protection against VOC Alpha for the following outcomes 14-41 days after 1st dose:</td>
</tr>
<tr>
<td></td>
<td>for the following outcomes 14-41 days after 1st</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dose:</td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>• 58.9 to 88.1% from infection (RME)</td>
<td>mRNA-1273 provided protection against VOC Alpha for the following outcomes at least 7 to 15 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td>• 60 to 61% from symptomatic infection (RME)</td>
<td>• 86 to 100% from infection (RME)</td>
</tr>
<tr>
<td></td>
<td>• 81.6% (95% CI, 71.0 to 88.8) from severe, critical, or fatal disease (combined with Beta)</td>
<td>• 90 to 95.7% from symptomatic infection (RME)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 95.7% (95% CI, 73.4 to 99.9) from severe, critical, or fatal disease (combined with Beta)</td>
</tr>
<tr>
<td>● Beta</td>
<td>mRNA-1273 provided protection against VOC Beta for the following outcomes 14 days after 1st dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 61.3% (95% CI, 56.5 to 65.5) from infection</td>
<td>• 61.3% (95% CI, 56.5 to 65.5) from infection</td>
</tr>
<tr>
<td></td>
<td>• 77% (95% CI, 63 to 86) from symptomatic infection</td>
<td>• 77% (95% CI, 63 to 86) from symptomatic infection</td>
</tr>
<tr>
<td></td>
<td>• 89% (95% CI, 73 to 95) from hospitalization</td>
<td>• 89% (95% CI, 73 to 95) from hospitalization</td>
</tr>
<tr>
<td></td>
<td>• 81.6% (95% CI, 71.0 to 88.8) from severe, critical, or fatal disease (combined with Alpha)</td>
<td>• 81.6% (95% CI, 71.0 to 88.8) from severe, critical, or fatal disease (combined with Alpha)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mRNA-1273 provided protection against VOC Beta for the following outcomes 35-41 days after 1st dose:</td>
</tr>
<tr>
<td></td>
<td>• 43% (95 CI, 22 to 59) from symptomatic infection</td>
<td>• 43% (95 CI, 22 to 59) from symptomatic infection</td>
</tr>
<tr>
<td>● Alpha to Delta</td>
<td>mRNA-1273 or BNT162b2 provided protection against VOC Alpha to Delta for the following outcomes ≥ 14 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 92% (95% CI, 85 to 96) from severe disease in people with no risk conditions</td>
<td>• 92% (95% CI, 85 to 96) from severe disease in people with no risk conditions</td>
</tr>
<tr>
<td></td>
<td>• 72% (95% CI, 51 to 84) from severe disease with very high risk conditions</td>
<td>• 72% (95% CI, 51 to 84) from severe disease with very high risk conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 Obs) [95]; last update 2021-10-06</td>
</tr>
<tr>
<td>● Delta</td>
<td>mRNA-1273 provided protection against VOC Delta for the following outcomes at least 14 days after 1st dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 75 to 80% from infection (RME)</td>
<td>• 75 to 80% from infection (RME)</td>
</tr>
<tr>
<td></td>
<td>• 72% (95% CI, 57 to 82) from symptomatic infection</td>
<td>• 72% (95% CI, 57 to 82) from symptomatic infection</td>
</tr>
<tr>
<td></td>
<td>• 96% (95% CI, 72 to 99) from hospitalization</td>
<td>• 96% (95% CI, 72 to 99) from hospitalization</td>
</tr>
<tr>
<td></td>
<td>• 93 to 100% from severe, critical, or fatal disease (RME)</td>
<td>• 93 to 100% from severe, critical, or fatal disease (RME)</td>
</tr>
<tr>
<td></td>
<td>mRNA-1273 provided protection against VOC Delta for the following outcomes 14 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 74 to 86% from infection (RME)</td>
<td>• 74 to 86% from infection (RME)</td>
</tr>
<tr>
<td></td>
<td>• 93 to 100% from severe, critical or fatal disease (RME)</td>
<td>• 93 to 100% from severe, critical or fatal disease (RME)</td>
</tr>
<tr>
<td></td>
<td>(7 Obs) [47][57][63][64][71][74][97]; last update 2021-10-06</td>
<td>(7 Obs) [47][57][63][64][71][74][97]; last update 2021-10-06</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| **Delta, VE over time** | mRNA-1273 provided protection against symptomatic infection by VOC Delta the following number of days after 2nd dose: | • 95.2% (95% CI, 94.4 to 95.9) – at 1 week
• 90.3% (95% CI, 67.2 to 97.1) – at 10 to 14 weeks
(1 Obs) [22]; last update 2021-09-22 |
| **Gamma** | mRNA-1273 provided protection against VOC Gamma for the following outcomes 14 days after 1st dose: | • 77% (95% CI, 63 to 86) from symptomatic infection
• 89% (95% CI, 73 to 95) from hospitalization

mRNA-1273 provided protection against VOC Gamma (or Beta) for the following outcomes 35-41 days after 1st dose: | • 43% (95% CI, 22 to 59) from symptomatic infection |
| | mRNA-1273 provided protection against VOC Gamma (or Beta) for the following outcome 7 days after 2nd dose: | • 88% (95% CI, 61 to 96) from symptomatic infection
(1 Obs – 2 refs) [23][47]; last update 2021-07-07 |
| **Epsilon** | mRNA-1273 provided protection against VOC Epsilon for the following outcome 15 days after 1st dose: | • 58.9% (95% CI, −9.7 to 84.5) from infection

mRNA-1273 provided protection against VOC Epsilon for the following outcome 15 days after 2nd dose: | • 85.7% (67.2 to 93.9) from infection
(2 Obs) [8][31]; last update 2021-06-08 |
| Special population | mRNA-1273 provided protection against VOC Alpha for the following outcome ≥21 days after 1st dose: | • 67% (95% CI, 57 to 75) from infection
(1 Obs) [35]; last update 2021-06-23 |
| **Over 70 years, Alpha**| mRNA-1273 (2 doses) after prior infection did not offer additional protection against VOC Alpha (or Beta) for the following outcomes: | • 15% (95% CI, -105 to 66) against re-infection compared to mRNA-1273 without prior infection
(1 Obs) [72]; last update 2021-08-25 |
| **Previously infected, Alpha or Beta** | mRNA-1273 or BNT162b2 provided protection against infection by VOC Alpha or Beta at the following number of days after 2nd dose: | • 46.6% (95% CI, 0.0 to 73.7) ≥14 days
• 66.0% (95% CI, 21.3 to 85.3) ≥42 days
• 73.9% (95% CI, 33 to 98.9) ≥56 days

mRNA-1273 or BNT162b2 provided protection against severe, critical, or fatal disease by VOC Alpha or Beta at the following number of days after 2nd dose: | • 72.3% (95% CI, 0.0 to 90.9) ≥14 days
• 85% (95% CI, 35.7 to 96.5) ≥42 days
• 83.8% (95% CI, 31.3 to 96.2) ≥56 days
(1 Obs) [90]; last update 2021-09-22 |
<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Effectiveness</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Over 70 years, Gamma</td>
<td>mRNA-1273 provided protection against VOC Gamma for the following outcome ≥21 days after 1st dose:</td>
<td>• 61% (95% CI, 45 to 72) from infection (1 Obs) [35]; last update 2021-06-23</td>
</tr>
<tr>
<td>• LTC, Gamma (residents)</td>
<td>mRNA-1273 (or BNT162b2) provided protection against VOC Gamma for the following outcomes 14 days after 2nd dose:</td>
<td>• 52.5% (95% CI, 26.9 to 69.1) against infection • 78.6% (95% CI, 47.9 to 91.2) against severe disease (1 Obs) [61]; last update 2021-08-11</td>
</tr>
<tr>
<td>Transmission</td>
<td>mRNA-1273 reduced transmission of VOC Alpha from a vaccinated HCW (10 weeks after 1st dose) to household spouse:</td>
<td>• 42.9% (95% CI, 22.3 to 58.1) from infection (1 Obs)[33]; last update 2021-07-07</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>From COVID-NMA</td>
<td>Compared to vaccinating with MedACWY (meningitis vaccine), vaccination with ChAd0x1 probably reduces the cases of symptomatic COVID-19 infection. The effects on severe or critical disease and mortality are uncertain. (*)Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated on 2021-01-25</td>
</tr>
<tr>
<td>Vaxzevria</td>
<td></td>
<td>(*) Rare cases of serious blood clots associated with a low platelet count known as vaccine-induced thrombotic thrombocytopenia (VITT or VIPIT) have been reported. The frequency of VITT varies by age and country.</td>
</tr>
<tr>
<td>Serum Institute of India</td>
<td></td>
<td>[AstraZeneca to complete vaccination scheme started with BNT16b2 at 28 days vs two doses of BNT16b2 separated by 28 days] Compared to vaccination with BNT16b2 vaccine, having a second dose of AstraZeneca after a first dose of BNT 16b2 may increase the risk of any adverse event, while the incidence of serious adverse events is uncertain. Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated on 2021-07-19</td>
</tr>
<tr>
<td>[Covishield]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By variant of concern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Alpha</td>
<td>ChAdOx1 provided protection against VOC Alpha for the following outcome 14 days after 1st dose:</td>
<td>• 64% (95% CI, 60 to 68) from symptomatic infection • 85% (95% CI, 81 to 88) from hospitalization ChAdOx1nCoV-19 provided protection against VOC Alpha for the following outcome 21 to 28 days after 1st dose:</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Alpha, VE over time</td>
<td>ChAdOx1 provided protection against symptomatic infection by VOC Alpha when the 2nd dose was given the following number of days after 1st dose:</td>
<td>(1 RCT, moderate quality; 5 Obs)[9][10][5][47][20][71]; last update 2021-08-25</td>
</tr>
<tr>
<td></td>
<td>• 66% (95% CI, 47 to 77) at 19-29 days (age 65 to 79)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 73% (95% CI, 56 to 83) at 85+ days (age 65 to 79)</td>
<td>(1 Obs) [29]; last update 2021-09-22 /setup/2021-09-22</td>
</tr>
<tr>
<td>Beta</td>
<td>ChAdOx1 provided protection against VOC Beta for the following outcome 14 days after 1st dose:</td>
<td>(1 RCT, moderate quality; 1 Obs) [4][47]; last update 2021-07-07</td>
</tr>
<tr>
<td></td>
<td>• 48% (95% CI, 28 to 63) from symptomatic infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 83% (95% CI, 66 to 92) from hospitalization</td>
<td></td>
</tr>
<tr>
<td>Alpha to Delta</td>
<td>ChAdOx1 provided protection against VOC Alpha to Delta for the following outcomes ≥ 14 days after 2nd dose:</td>
<td>(1 Obs) [95]; last update 2021-10-06</td>
</tr>
<tr>
<td></td>
<td>• 94% (95% CI, 90 to 96) from severe disease in people with no risk conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 63% (95% CI, 46 to 75) from severe disease with very high risk conditions</td>
<td></td>
</tr>
<tr>
<td>Delta</td>
<td>ChAdOx1 provided protection against VOC Delta for the following outcome at least 21 days after 1st dose:</td>
<td>(8 Obs) [29][38][42][47][65][71][75][87]; last update 2021-10-06</td>
</tr>
<tr>
<td></td>
<td>• 18 to 49% from infection (RME)</td>
<td>*combined with VOC Alpha</td>
</tr>
<tr>
<td></td>
<td>• 33 to 58% from symptomatic infection (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 71% (95% CI, 51 to 83) from hospitalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 69% (95% CI, -160 to 97) from death</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChAdOx1 provided protection against VOC Delta for the following outcome 14 to 21 days after 2nd dose:</td>
<td>(1 Obs) [92]; last update 2021-09-22 /setup/2021-09-22</td>
</tr>
<tr>
<td></td>
<td>• 60 to 67% from infection (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 28 to 67% from symptomatic infection (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 99.2% (95% CI, 97.6 to 99.7) from ICU admission*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 92% (95% CI, 75 to 97) from hospitalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 97 to 99.6% from death (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8 Obs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delta, VE over time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChAdOx1 provided protection against symptomatic infection by VOC Delta the following number of days after 2nd dose:</td>
<td>(1 Rct, moderate quality; 1 Obs) [92]; last update 2021-09-22 /setup/2021-09-22</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>• Gamma</td>
<td>ChAdOx1nCoV-19 provided protection against VOC Gamma for the following outcome 14 days after 1st dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 48% (95% CI, 28 to 63) from symptomatic infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 83% (95% CI, 66 to 92) from hospitalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 Obs)[47]; last update 2021-07-07</td>
<td></td>
</tr>
<tr>
<td>• Epsilon</td>
<td>no data</td>
<td></td>
</tr>
</tbody>
</table>

Special populations

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Effectiveness</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HCW, Alpha</td>
<td>ChAdOx1 provided protection against VOC Alpha for the following outcomes at least 14 days after 1st dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 64% (95% CI, 50 to 74) from infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChAdOx1 provided protection against VOC Alpha for the following outcomes at least 14 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 90% (95% CI, 62 to 98) from infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 Obs) [46]; last update 2021-07-07</td>
<td></td>
</tr>
<tr>
<td>• Over 80 years, Alpha</td>
<td>ChAdOx1 provided protection against VOC Alpha for the following outcomes at least 14 days after 1st dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 73 to 80% from hospitalization (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 42% (95% CI, 29 to 53) from infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChAdOx1 provided protection against VOC Alpha for the following outcomes at least 14 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 88% (95% CI, 48 to 97) from symptomatic infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3 Obs) [13][20][79]; last update 2021-09-22</td>
<td></td>
</tr>
<tr>
<td>• HCW, Delta</td>
<td>ChAdOx1 provided protection against VOC Delta for the following outcomes at least 14 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 54 to 85% from infection (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 64% (95% CI, 38 to 78) from symptomatic infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2 Obs) [59][66]; last update 2021-10-06</td>
<td></td>
</tr>
</tbody>
</table>

Transmission

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Effectiveness</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Household of vaccinated individual, Alpha</td>
<td>ChAdOx1nCoV-19 reduced transmission of VOC Alpha from a vaccinated index case (14 to 21 days after 1st dose) to household contacts compared to households of unvaccinated index cases:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 30 to 47% from infection (RME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2 Obs) [6][14]; last update 2021-06-08</td>
<td></td>
</tr>
<tr>
<td>• Vaccinated close contacts of COVID+, Alpha</td>
<td>ChAdOx1nCoV-19 reduced transmission to close contacts COVID+ index cases at least 14 days after 2nd dose:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 44% (95% CI, 31 to 54) from infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 92% (95% CI, 46 to 99) from hospitalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 Obs)[40]; last update 2021-06-23</td>
<td></td>
</tr>
</tbody>
</table>

Johnson & Johnson [AD26.COV2.S]

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Effectiveness</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>From COVID-NMA</td>
<td>[Johnson & Johnson’s Janssen vaccine] Vaccination with AD26.COV2.S probably reduces the incidence of symptomatic cases of COVID-19 by around 67%, and it probably reduces severe disease and mortality, while the incidence of serious adverse events may not increase. Review of RCTs (AMSTAR 10/11); last search update 2021-09-17. GRADE evidence profile updated on 2021-05-28</td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Interim summary, provided by VOC-study group: Ad26.COV2.S VE in ~40,000 randomized subjects was 66.9%; adjusted (95% CI, 59.0 to 73.4) at 14 days and 66.1% (95% CI, 55.0 to 74.8) at 28 days. For severe cases VE was 76.7% (95% CI, 54.6 to 89.1) at ≥14 days and 85.4% (95% CI, 54.2 to 96.9) at ≥28 days). (1 RCT, moderate quality of evidence) [2] Rare cases of serious blood clots associated with a low platelet count known as vaccine-induced thrombotic thrombocytopenia (VITT, VIPIT) have been reported. The frequency of VITT varies by age and country. (data not systematically reviewed); last update 2021-05-17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>By variant of concern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alpha</td>
<td>no data</td>
</tr>
<tr>
<td></td>
<td>• Beta</td>
<td>VE against VOC 20H/501Y.V2 variant (Beta) was 52.0% and 64.0% at 14 days and 28 days for moderate, and 73.1% and 81.7% for severe cases. (1 RCT) [2]; last update 2021-04-22</td>
</tr>
<tr>
<td></td>
<td>• Delta</td>
<td>Ad26.COV2.S provided protection against VOC Delta for the following outcomes ≥ 14 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 51% (95% CI, -2 to 76) against infection (1 Obs) [97]; last update 2021-10-06</td>
</tr>
<tr>
<td></td>
<td>• Gamma</td>
<td>no data</td>
</tr>
<tr>
<td></td>
<td>• Epsilon</td>
<td>no data</td>
</tr>
<tr>
<td>Sinovac</td>
<td>• Overall</td>
<td>[Coronavac vaccine] Compared to placebo, vaccination with Coronavac may reduce the incidence of symptomatic cases of COVID-19 by 50%, close to the lowest level deemed effective by the WHO and it may substantially reduce the incidence of severe disease due to COVID-19; the evidence for any difference in serious adverse events is uncertain, although the vaccination probably increases the incidence of any adverse event. Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated 2021-06-25</td>
</tr>
<tr>
<td>CoronaVac</td>
<td>• Delta</td>
<td>CoronaVac provided protection against VOC Delta for the following outcome ≥ 14 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 59% (95% CI, 16 to 81.6) from symptomatic infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 89 to 100% from severe infection (RME) (2 Obs) [85][91]; last update 2021-09-22</td>
</tr>
<tr>
<td></td>
<td>• Gamma</td>
<td>CoronaVac provided protection against VOC Gamma for the following outcome ≥ 14 days after 2nd dose for people over age 70:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 41.6% (95% CI, 26.9 to 63.3) from symptomatic infection</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2 Obs) [30][49]; last update 2021-07-14</td>
</tr>
<tr>
<td></td>
<td>• Epsilon</td>
<td>no data</td>
</tr>
<tr>
<td></td>
<td>By special population</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HCW, Gamma</td>
<td>CoronaVac provided protection against VOC Gamma for the following outcomes ≥14 days after 1st dose:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 35.1% (95% CI, -6.6 to 60.5) from infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 49.6% (95% CI, 11.3 to 71.4) from symptomatic infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 Obs)[18]; last update 2021-05-07</td>
</tr>
<tr>
<td>Sinopharm (Wuhan)</td>
<td>• From COVID-</td>
<td>[Sinopharm - strain HBO2] Vaccination with Sinopharm HBO2 probably reduces the incidence of symptomatic cases of COVID-19, and it may reduce severe disease, while the incidence of adverse events is probably not increased.</td>
</tr>
<tr>
<td>Sinopharm (Beijing)</td>
<td>NMA</td>
<td>Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated on 2021-06-11</td>
</tr>
<tr>
<td>[HBO2] [BBIBP-CorV]</td>
<td></td>
<td>[Sinopharm - strain WIV04] Vaccination with Sinopharm WIV04 probably reduces the incidence of symptomatic cases of COVID-19, and it may reduce severe disease, while the incidence of adverse events is probably not increased.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated on 2021-06-11</td>
</tr>
<tr>
<td></td>
<td>• Delta</td>
<td>BBIBP-CorV provided protection against VOC Delta for the following outcomes ≥14 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 95.4% (95% CI, 94.6 to 96.2) against ICU admission*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 94.3% (95% CI, 93.1 to 95.4) against death*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 Obs) [75]; last update 2021-09-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*combined with VOC Alpha</td>
</tr>
<tr>
<td>Novavax [NVX-CoV2373]</td>
<td>• From COVID-</td>
<td>[Novavax vaccine] The effects of vaccination against COVID-19 with the Novavax vaccine are currently uncertain; it probably slightly increase the risk of any adverse events</td>
</tr>
<tr>
<td></td>
<td>NMA</td>
<td>Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated on 2021-07-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NVX-CoV2373 provided protection against VOC Alpha for the following outcome after 2 doses:</td>
</tr>
<tr>
<td></td>
<td>• Alpha</td>
<td>• 89.7% (95% CI, 80.2 to 94.6) from infection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No hospitalizations or deaths in vaccinated group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Post hoc: 86.3% (95% CI, 71.3 to 93.5) from confirmed Alpha symptomatic infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 RCT, moderate quality), [19]; last update 2021-06-16</td>
</tr>
<tr>
<td></td>
<td>• Beta</td>
<td>NVX-CoV2373 provided protection against VOC Beta for the following outcome after 7 days after 2nd dose:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Post-hoc: 43% (95% CI, -9.8 to 70.4) from symptomatic infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 RCT, moderate quality), [17]; last update 2021-07-14</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Effectiveness</td>
<td>Findings</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>FBRI [EpiVacCorona]</td>
<td>From COVID-NMA</td>
<td>[EpiVacCorona] The effects of using vaccination with EpiVacCorona are uncertain. Review of RCTs (AMSTAR 10/11); last search date 2021-09-17; GRADE evidence profile updated on 2021-06-11</td>
</tr>
<tr>
<td>Bharat Biotech [Covaxin]</td>
<td>From COVID-NMA</td>
<td>[COVAXIN] Vaccination with BBV152 probably reduces the incidence of symptomatic cases of COVID-19, and it may reduce severe disease, while the incidence of serious adverse events is probably not increased. Review of RCTs (AMSTAR 10/11); last search date 2021-09-17. GRADE evidence profile updated on 2021-07-29.</td>
</tr>
</tbody>
</table>
| By special population | | Covaxin provided protection against VOC Delta for the following outcomes ≥14 days after 2nd dose:
| | | • 83% (95% CI, 73 to 89) from symptomatic infection
| | | • 93% (95% CI, 64 to 99) from ICU admission or death (1 Obs); [82]; last update 2021-09-22 |
| Gamaleya [Sputnik V] [Gam-COVID-Vac] | | Gam-COVID-Vac provided protection against VOC Delta for the following outcomes ≥14 days after 2nd dose:
| | | • 100% (95% CI, 99.2 to 100) against ICU admission*
| | | • 99.5% (95% CI, 98.5 to 99.9) against death*
| | | (1 Obs) [75]; last update 2021-09-02
| | | *combined with VOC Alpha |
| Combinations of Vaccines | | First dose ChAdOx1 followed by second dose BNT162b2 or mRNA-1273 (≥ 14 days) provided protection against VOC Alpha for the following outcomes:
| AstraZeneca followed by Pfizer or Moderna | Alpha | • 88% (95% CI, 83 to 92) against infection
| | | (1 Obs) [70]; last search date 2021-08-25 |

*delayed exclusion (see Section 2: excluded studies for reason)

Links to references are provided in Appendix 1

The COVID-19 Evidence Network to support Decision-making (COVID-END) is supported by an investment from the Government of Canada through the Canadian Institutes of Health Research (CIHR). To help Canadian decision-makers as they respond to unprecedented challenges related to the COVID-19 pandemic, COVID-END in Canada is preparing rapid evidence responses like this one. The opinions, results, and conclusions are those of the evidence-synthesis team that prepared the rapid response, and are independent of the Government of Canada and CIHR. No endorsement by the Government of Canada or CIHR is intended or should be inferred.
Section 1: included studies

<table>
<thead>
<tr>
<th>Ref</th>
<th>Author</th>
<th>Bottom line</th>
<th>ROBINS-I*</th>
<th>Design, Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dagan</td>
<td>BNT162b2 showed VE 46% (95% CI, 40 to 51) against infection 14 to 20 days after 1st dose and VE 92% (95% CI, 88 to 95) 7 days after 2nd dose.</td>
<td>Moderate</td>
<td>Data-linkage study in Israel; 5 M matched participants (2 M excluded – also (possible overlap with Haas); time and setting for VOC Alpha (estimated 80%).</td>
</tr>
<tr>
<td>2</td>
<td>Haas</td>
<td>BNT162b2 showed VE 95.3% (95% CI, 94.9 to 95.7) against infection; VE 97.5% (95% CI, 97.1 to 97.8) against severe or critical COVID-19-related hospitalization; VE 96.7% (95% CI, 96.0 to 97.3) against death 7 days after 2nd dose.</td>
<td>Serious</td>
<td>Data-linkage study in Israel; >6.5 M matched participants (possible overlap with Dagan) Updated May 14 due to final publication; sample confirmed VOC Alpha (estimated 94%).</td>
</tr>
<tr>
<td>3</td>
<td>Kustin</td>
<td>BNT162b2 showed lower relative VE (2.4:1) against Alpha, after 1st dose; and lower VE (8:1) against Beta after 2nd dose in a population with >90% of Alpha and <1% Beta.</td>
<td>Moderate</td>
<td>Case-control study in Israel; small sample for Beta (no overlap CHS cohort); confirmed VOC Alpha and Beta.</td>
</tr>
<tr>
<td>4</td>
<td>Madhi</td>
<td>ChAdOx1 nCoV-19 showed VE 10.4% (95% CI, -76.8 to 54.8) against mild to moderate disease 14 days after 2nd dose.</td>
<td>Moderate</td>
<td>RCT in South Africa; Underpowered for 20% efficacy (42 cases); VOC Beta.</td>
</tr>
<tr>
<td>5</td>
<td>Emary</td>
<td>ChAdOx1nCoV-19 showed VE 61.7% (95% CI, 36.7 to 76.9) against infection by VOC Alpha ≥ 15 days after 2nd dose.</td>
<td>Moderate</td>
<td>RCT in UK; neutralization of Alpha 9 times lower; no sequencing for 45% of cases; 52 cases (19%) had VOC Alpha.</td>
</tr>
<tr>
<td>6</td>
<td>Shah</td>
<td>ChAdOx1nCoV-19 or BNT162b2 reduced infection in unvaccinated household contacts of vaccinated HCW by about 30% (HR 0.70, 95% CI 0.63 to 0.78) ≥ 14 days after 1st dose; ChAdOx1nCoV-19 or BNT162b2 reduced infection in HCW by about 55% (HR 0.45, 95% CI 0.42 to 0.49) and hospitalization by 84% (HR 0.16, 95% CI 0.09 to 0.27) ≥ 14 days after 1st dose.</td>
<td>Moderate</td>
<td>Data-linkage study in Scotland - (25% of cases had received 2 doses); time and setting for VOC Alpha.</td>
</tr>
<tr>
<td>7</td>
<td>Sadoff</td>
<td>Single dose Ad26.COV2.S showed VE 52.0% (95% CI, 30.3 to 67.4) at 14 days and VE 64.0% (95% CI, 41.2 to 78.7) at 28 days against moderate to severe disease and VE 81.7% (95% CI, 46.2 to 95.4) at 28 days against severe disease (VOC Beta in South Africa).</td>
<td>Moderate</td>
<td>RCT; over 40,000 participants; Argentina, Brazil, Chile, Colombia, Mexico, Peru, South Africa, and the United States; 86 of 91 cases sequenced for VOC Beta.</td>
</tr>
</tbody>
</table>

*Note: ROBINS-I score risk of bias: Low risk of bias indicates high quality
<table>
<thead>
<tr>
<th>Page</th>
<th>Author</th>
<th>Study Details</th>
<th>Risk of Bias</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Andrejko</td>
<td>BNT162b2 or mRNA-1273 showed VE 58.9% (95% CI, −9.7 to 84.5) at 15 days after 1st dose, and VE 85.7% (95% CI, 67.2 to 93.9) 15 days after 2nd dose against infection.</td>
<td>Moderate</td>
<td>Test-negative case-positive random sampling matched control study in California; 645 participants; 69% of population at time had VOC Alpha or Epsilon.</td>
</tr>
<tr>
<td>9</td>
<td>Glampson</td>
<td>ChAdOx1nCoV-19 showed VE 74% (95% CI, 65 to 81) against infection 28 days after 1st dose. BNT162b2 showed VE 78% (95% CI, 73 to 82) against infection 28 days after 1st dose.</td>
<td>Moderate</td>
<td>Retrospective cohort in UK; 2M participants; 389,587 vaccinated (58% Pfizer, 42 AZ); time and setting for VOC Alpha.</td>
</tr>
<tr>
<td>10</td>
<td>Pritchard</td>
<td>ChAdOx1nCoV-19 or BNT162b2 showed VE 66% (95% CI, 59 to 72%) 21 days after 1st dose and 78% (95% CI, 68 to 85%) after 2nd dose against infection.</td>
<td>Moderate</td>
<td>Prospective cohort in UK; 370,000 participants; sample confirmed VOC Alpha.</td>
</tr>
<tr>
<td>11</td>
<td>Hall (SIREN)</td>
<td>BNT162b2 vaccine showed VE of 70% (95% CI, 55 to 85) 21 days after 1st dose and 85% (95% CI, 74 to 96) 7 days after 2nd dose against infection in HCW.</td>
<td>Moderate</td>
<td>Prospective cohort with standardized testing for HCW over all of England; 23,000 participants.</td>
</tr>
<tr>
<td>12</td>
<td>Shrotri</td>
<td>Similar effect sizes were seen for ChAdOx1 (aHR 0.32, 95% CI, 0.15 to 0.66) and BNT162b2 (aHR 0.35, 95% CI, 0.17 to 0.71) at 35-48 days after 1st dose.</td>
<td>Critical</td>
<td>Prospective cohort in England: 9160 of 10,412 frail LTC residents, 66% Pfizer, 33% AZ; routine screening; time and setting for VOC Alpha.</td>
</tr>
<tr>
<td>13</td>
<td>Hyams</td>
<td>1st BNT162b2 showed VE 71.4% (95% CI, 43.1 to 86.2) against hospitalization 14 days after 1st dose; ChAdOx1nCoV-19 showed VE 80.4% (95% CI, 36.4 to 94.5) against hospitalization 14 days after 1st dose for 80+. When effectiveness analysis for BNT162b2 was restricted to the period covered by ChAdOx1nCoV-19, the estimate was 79.3% (95% CI, 47.0 to 92.5).</td>
<td>Moderate</td>
<td>Test negative case-control study in Scotland. Single center; 466 participants, 80+; time and setting for VOC Alpha.</td>
</tr>
<tr>
<td>14</td>
<td>Harris</td>
<td>BNT162b2 or ChAdOx1 reduced likelihood of transmission by 40-50% for household contacts of HCW 21 days after 1st dose.</td>
<td>Moderate</td>
<td>Data-linkage and case-control study in England; 338,887 participants; time and setting for VOC Alpha.</td>
</tr>
<tr>
<td>15</td>
<td>Goldberg</td>
<td>Prior infection (in unvaccinated) has similar VE against infection [94.8%], and severe illness [96.4%] as two doses of BNT162b2.</td>
<td>Serious</td>
<td>Data-linkage study in Israel; 6,351,903 participants; likely overlaps with Dagan and Haas; time and setting for VOC Alpha.</td>
</tr>
<tr>
<td>16</td>
<td>Cavanaugh</td>
<td>VE 66.2% (95% CI, 40.5% to 80.8%) against infection among LTC residents and 75.9% (95% CI, 32.5% to 91.4%) among HCW. VE 94.4% (95% CI, 73.9% to 98.8%) against hospitalization among residents; no HCW were hospitalized. Three residents died, two of whom were unvaccinated (VE 94.4%; 95% CI, 44.6% to 99.4%).</td>
<td>Critical</td>
<td>Outbreak analysis in LTC in Kentucky; small number of events; VOI R.1</td>
</tr>
<tr>
<td>17</td>
<td>Shinde</td>
<td>NVX-CoV2372 VE showed VE 50.4% (95% CI, 16.6 to 70.5) against symptomatic infection 7 days after 2nd dose.</td>
<td>Moderate quality (RCT)</td>
<td>RCT in South Africa; 4387 participants; 38/41 cases VOC Beta</td>
</tr>
<tr>
<td>18</td>
<td>Hitchings</td>
<td>CoronaVac showed VE of 35.1% (95% CI, -6.6 to 60.5) against infection in HCW after 1st dose.</td>
<td>Moderate</td>
<td>Case-control study in HCWs in Manaus; 53,176 participants; 75% prevalence of Gamma; 776 (28%) of 2797 PCR were used for the case-controls; rate of previous infection high in the population</td>
</tr>
<tr>
<td>19</td>
<td>Heath</td>
<td>NVX-CoV2373 showed VE 89.7% (95% CI, 80.2 to 94.6) against infection after 2nd dose. No hospitalizations or deaths in vaccinated group.</td>
<td>Moderate quality (RCT)</td>
<td>RCT; 15,187 participants in UK Post hoc: VE 86.3% (95% CI, 71.3 to 93.5) against Alpha variant; 10 cases in vaccinated participants; 66 infections confirmed Alpha; 11 infections no sequencing available</td>
</tr>
<tr>
<td>20</td>
<td>Ismail</td>
<td>BNT162b2 showed VE 81% (95% CI, 76 to 85) against hospitalization 28 days after 1st dose and 93% (95% CI, 89 to 95) 14 days after the 2nd dose for people 80+. ChAdOx1 showed VE 73% (95% CI, 60 to 81) against hospitalization 28 days after 1st dose; sample size too small to report VE after 2nd dose for people 80+.</td>
<td>Moderate</td>
<td>Screening study in UK; 13,907 hospitalized patients; results for age 80+; time and setting for VOC Alpha</td>
</tr>
<tr>
<td>21</td>
<td>Bernal (2)</td>
<td>BNT162b2 showed VE 44% (95% CI, 32 to 53) after 1st dose and 69% (95% CI, 31 to 86) after 2nd dose against symptomatic infection in 70+. Single dose ChAdOx1 showed VE 55% (95% CI, 41 to 66) against death.</td>
<td>Critical</td>
<td>Data-linkage study in England; 48,996 cases above age 70+; 12.7% BNT162b2 and 8.2% ChAdOx1; VE also reported for 80+ and LTC; time and setting for VOC Alpha</td>
</tr>
<tr>
<td>22</td>
<td>Chodick</td>
<td>BNT162b2 showed VE 90% (95% CI, 79 to 95) against infection and VE 94% (95% CI, 88 to 97) against death 7-27 days after 2nd dose; 71% (95% CI, 37 to 87) in immunosuppressed.</td>
<td>Moderate</td>
<td>Data-linkage study in Israel (Maccabi Health Care Organization); 1,178,597 participants; compared time</td>
</tr>
<tr>
<td>ID</td>
<td>Author</td>
<td>Design</td>
<td>Study Details</td>
<td>Effectiveness</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>23</td>
<td>Chung</td>
<td>Moderate</td>
<td>BNT162b2 or mRNA-1273 showed VE 61% (95% CI, 56 to 66) against symptomatic infection by VOC Alpha 14 days after 1st dose and 90% (95% CI, 85 to 94) 7 days after 2nd dose; 43% (95% CI, 22 to 59) against symptomatic infection by VOC Beta or Gamma 14 days after 1st dose and 88% (95% CI, 61 to 96) 7 days after 2nd dose.</td>
<td>Test-negative study in Ontario 324,033 participants; limitations in symptom collection; screening for variants started 2 months into study period; results also reported for age>70 and according to vaccine (but not according to confirmed variant)</td>
</tr>
<tr>
<td>24</td>
<td>Bailly</td>
<td>Critical</td>
<td>BNT162b2 showed VE 50% (95% CI, 34 to 73) against infection with VOC Beta >28 days after 2 doses.</td>
<td>Outbreak in a single LTC in France; 90 participants; all samples genome sequenced for VOC Beta; 2 deaths in vaccinated group</td>
</tr>
<tr>
<td>25</td>
<td>Angel</td>
<td>Moderate</td>
<td>BNT162b2 showed VE 97% (95% CI, 94 to 99) against symptomatic infection and 86% (95% CI, 69 to 93) against asymptomatic infection ≥ 7 days after 2 doses in HCW.</td>
<td>Retrospective cohort at a single centre tertiary medical centre in Israel, 6,710 participants; testing strategy was different between vaccinated and unvaccinated; time and setting for VOC Alpha</td>
</tr>
<tr>
<td>26</td>
<td>Bianchi</td>
<td>Moderate</td>
<td>BNT162b2 showed VE 61.9% (95% CI, 19.2 to 82) against infection 14 to 20 days after 1st dose; 96% (95% CI, 82.2 to 99.1) ≥ 7 days after 2nd dose in HCW.</td>
<td>Data-linkage, single centre medical centre in Italy, 2,034 participants; time and setting for VOC Alpha</td>
</tr>
<tr>
<td>27</td>
<td>Yassi</td>
<td>Moderate</td>
<td>BNT162b2 (93%) or mRNA-1273 showed VE 37.2% (95% CI, 16.6 to 52.7) against infection by VOC Beta or Gamma 14 to 42 days after 1st dose and 79.2% (95% CI, 64.6 to 87.8) 7 days after 2nd dose in HCW.</td>
<td>Data-linkage, 25,558 Canadian HCW; evenly split between VOC Gamma and VOC Beta by end of study period</td>
</tr>
<tr>
<td>28</td>
<td>Bernal (1)</td>
<td>Serious</td>
<td>BNT162b2 showed VE 60% (95% CI, 40 to 73) against confirmed symptomatic infection by VOC Alpha at least 28 days after 1st dose and 90% (95% CI, 84 to 94) at least 14 days after 2nd dose for people 70+.</td>
<td>Test-negative in England, 156,930 participants; spike gene target failure as proxy for confirmed VOC Alpha</td>
</tr>
<tr>
<td>29</td>
<td>Bernal (3)</td>
<td>Serious</td>
<td>BNT162b2 showed VE 47.5% (95% CI, 41.6 to 52.8) at least 21 days after 1st dose and VE 93.7% (95% CI, 91.6 to 95.3) at least 14 days after 2nd dose against symptomatic infection by confirmed VOC Alpha. ChadOx1 showed VE 48.7% (95% CI, 45.2 to 51.9) at least 21 days after 1st dose and VE 74.5% (95% CI, 68.4 to 79.4) at least 14 days after 2nd dose</td>
<td>Test-negative in England; 19,109 sequenced cases: 14,837 Alpha and 4,272 Delta.</td>
</tr>
</tbody>
</table>
against symptomatic infection by confirmed VOC Alpha.

BNT162b2 showed VE 35.6% (95% CI, 22.7 to 46.4) at least 21 days after 1st dose and VE 88% (95% CI, 85.3 to 90.1) at least 14 days after 2nd dose against symptomatic infection by confirmed VOC Delta.

ChAdOx1 showed VE 30% (95% CI, 24.3 to 35.3) at least 21 days after 1st dose and VE 67% (95% CI, 61.3 to 71.8) at least 14 days after 2nd dose against symptomatic infection by confirmed VOC Delta.

30 **Ranzani** CoronaVac reduced risk of symptomatic infection by VOC Gamma VE 41.6% (95% CI, 26.9 to 63.3) ≥ 14 days after 2nd dose for people 70+.

Moderate Test-negative in Brazil; 44,055 participants; sequencing not performed; effectiveness declined with age; time and setting for VOC Gamma

31 **Andrejko (2)** BNT162b2 and mRNA-1273 showed VE 86.8% (95% CI, 68.6 to 94.7) and VE 86.10% (95% CI, 69.1 to 93.9), respectively, against infection 15 days after 2nd dose.

Moderate Test-negative in California; 1,023 participants; expansion of sample size and timeline since previous study by same authors; self-reported vaccine receipt; VOC Alpha, Epsilon

32 **Emborg** BNT162b2 showed VE 53-86% against infection across high-risk groups, VE 75-87% against hospitalization across high-risk groups, VE 89% (95% CI, 81 to 93) against death in LTCF residents and VE 97% (95% CI, 88 to 99) against death in 65+ requiring personal care 7 days after 2nd dose.

Serious Data-linkage population study of high-risk groups in Denmark; 864,096 participants; sample confirmed VOC Alpha

33 **Salo** BNT162b2 showed VE 42.9% (95% CI, 22.3 to 58.1) against infection in unvaccinated household members of vaccinated HCW 10 weeks after 1st dose.

Moderate Data-linkage for household contacts of HCW in Finland; 52,766 spouses of vaccinated HCW; time and setting for VOC Alpha

34 **Shrestha** BNT162b2 or mRNA-1273 showed VE 97.1% (95% CI, 94.3 to 98.5) against infection ≥14 days after 2nd dose (based on multivariable model).

Moderate Retrospective cohort of employees of a health care system in Ohio; 46,866 participants (60%) vaccinated by end of study; time and setting for VOC Alpha

35 **Skowronski** BNT162b2 (85%) or mRNA-1273 showed VE 67% (95% CI, 57 to 75) against infection by confirmed VOC Alpha ≥21 days after 1st dose for 70+.

Serious Test-negative in Canada; 16,993 specimens; out of 1,131 genetically sequenced: 45% VOC Alpha and 28% Gamma;
| **BNT162b2 (85%) or mRNA-1273** showed VE 61% (95% CI, 45 to 72) against infection by confirmed VOC Gamma ≥ 21 days after 1st dose for 70+. | **BNT162b2 or mRNA-1273 showed overall VE 60.4% (95% CI, 30 to 77.6) against symptomatic infection ≥ 14 days after 1st dose; BNT162b2 or mRNA-1273 showed overall VE 95.7% (95% CI, 90 to 98.2) against symptomatic infection ≥ 14 days after 2nd dose.** | **BNT162b2 reported no symptomatic infections in the vaccinated group (0/686) compared to 0.83% infections in the vaccinated general population control group.** | limitiations in symptom collection and assessment for covariates; results reported by vaccine but not according to confirmed variant | **Serious** | **Critical** | **Moderate** | **Critical** |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 36 **Abu-Raddad** | BNT162b2 showed VE 89.5% (95% CI, 85.9 to 92.3) against infection, VE 100% (95% CI, 81.7 to 100) against any severe, critical, or fatal disease by VOC Alpha ≥ 14 days after 2nd dose. | Test-negative in Qatar; 17,293 cases; sequencing showed 50% VOC Beta and 45% VOC Alpha between February-March 2021 | Retrospective cohort of HCW at a single centre in Kentucky, USA; 2,134 participants; time and setting for VOC Alpha | | | | |
| 37 **Akhrass**
Delayed exclusion - failure to report outcomes of interest for this LES | BNT162b2 or mRNA-1273 showed overall VE 60.4% (95% CI, 30 to 77.6) against symptomatic infection ≥ 14 days after 1st dose; BNT162b2 or mRNA-1273 showed overall VE 95.7% (95% CI, 90 to 98.2) against symptomatic infection ≥ 14 days after 2nd dose. | Test-negative in Scotland; 626,900 specimens; also compared hospitalization rates between S gene positive (VOC Delta) and S gene negative specimens within 14 days of positive test result (not summarized here) | Prospective cohort of adults with autoimmune inflammatory rheumatic diseases in Israel; 686 participants; time and setting for VOC Alpha | | | | |
| 38 **Sheikh** | BNT162b2 showed VE 30% (95% CI, 17 to 41) against confirmed VOC Delta infection and VE 33% (95% CI, 15 to 47) against symptomatic infection at least 28 days after 1st dose; VE 79% (95% CI, 75 to 82) against infection and VE 83% (95% CI, 78 to 87) against symptomatic infection at least 14 days after 2nd dose.
ChAdOx1 showed VE 18% (95% CI, 9 to 25) against confirmed VOC Delta infection and VE 33% (95% CI, 23 to 41) against symptomatic infection at least 28 days after 1st dose; VE 60% (95% CI, 53 to 66) against infection and VE 61% (95% CI, 51 to 70%) against symptomatic infection at least 14 days after 2nd dose. | | | | | | | |
| 39 **Furer**
Delayed exclusion – critical risk of bias | BNT162b2 reported no symptomatic infections in the vaccinated group (0/686) compared to 0.83% infections in the vaccinated general population control group. | | | | | | | |
<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Data</th>
<th>Baseline Details</th>
<th>Results</th>
<th>Study Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Martinez-Baz</td>
<td>BNT162b2 showed VE 65% (95% CI, 56 to 73) against infection and VE 94% (95% CI, 60 to 99) against hospitalization at least 14 days after 2nd dose in close contacts of COVID+ index cases. ChAdOx1 showed VE 44% (95% CI, 31 to 54) against infection and VE 92% (95% CI, 46 to 99) against hospitalization at least 14 days after 1st dose in close contacts of index cases. Second dose results not reported.</td>
<td>Serious</td>
<td>Prospective cohort of close contacts of COVID+ people in Spain; 20,961 participants; VOC Alpha confirmed for small sample; sample size for Moderna too small to report results separately</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Chodick (2)</td>
<td>BNT162b2 showed VE 51.4% (95% CI, 16.3 to 71.8) against infection 13 to 24 days after 1st dose.</td>
<td>Serious</td>
<td>Data-linkage study in Israel (Maccabi Health Care Services); 351,897 participants; time and setting for VOC Alpha</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Stowe</td>
<td>BNT162b2 showed VE 94% (95% CI, 46 to 99) at least 21 days after 1st dose and VE 96% (95% CI, 86 to 99) at least 14 days after 2nd dose against hospitalization by confirmed VOC Delta. ChAdOx1 showed VE 71% (95% CI, 51 to 83) at least 21 days after 1st dose and VE 92% (95% CI, 75 to 97) 14 days after 2nd dose against hospitalization by confirmed VOC Delta.</td>
<td>Serious</td>
<td>Same cohort as Bernal (3) with extended time frame for symptomatic infection and adding in data-linkage to hospitalization; 14,019 participants; sample confirmed VOC Delta</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Saciuk</td>
<td>BNT162b2 showed VE 93% (95% CI, 92.6 to 93.4) against infection, VE 93.4% (95% CI, 91.9 to 94.7) against hospitalization and VE 91.1% (95% CI, 86.5 to 94.1) against death at least 7 days after 2nd dose</td>
<td>Serious</td>
<td>Retrospective cohort of members of a health management organization in Israel; 1,650,885 participants; time and setting for VOC Alpha</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Zacay</td>
<td>BNT162b2 showed VE 61% (95% CI, 49 to 71) at least 14 days after 1st dose and VE 89% (95% CI, 82 to 94) at least 7 days after 2nd dose against infection</td>
<td>Serious</td>
<td>Retrospective cohort of a subpopulation of members of a health management organization in Israel who had undergone repeated PCR testing; 6,286 participants; time and setting for VOC Alpha</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Azamgarhi</td>
<td>BNT162b2 showed VE 70% (95% CI, 6 to 91) against infection at least 14 days after 1st dose</td>
<td>Serious</td>
<td>Single centre cohort study of HCW in UK; 2,260 participants; time and setting for VOC Alpha</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Lumley</td>
<td>BNT162b2 (63%) or ChAdOx1 showed VE 64% (95% CI, 50 to 74) 14 days after 1st dose and VE 90% (95% CI, 62 to 98) 14 days after 2nd dose against infection</td>
<td>Serious</td>
<td>Prospective cohort of HCW’s in Oxfordshire, UK; 13,109 participants; confirmed VOC Alpha</td>
<td></td>
</tr>
</tbody>
</table>
Nasreen

BNT162b2 showed VE 89% (95% CI, 86 to 91) against symptomatic infection and VE 95% (95% CI, 92 to 97) against hospitalization at least 7 days after 2nd dose (VOC Alpha); VE 84% (95% CI, 69 to 92) against symptomatic infection and VE 95% (95% CI, 81 to 99) against hospitalization at least 7 days after 2nd dose (VOC Beta/Gamma); VE 87% (95% CI, 64 to 95) against symptomatic infection at least 7 days after 2nd dose (VOC Delta).

BNT162b2 showed VE 78% (95% CI, 65 to 86) against hospitalization at least 7 days after 2nd dose (VOC Delta).

mRNA-1273 showed VE 92% (95% CI, 86 to 96) against symptomatic infection and VE 94% (95% CI, 89 to 97) against hospitalization at least 7 days after 2nd dose (VOC Alpha).

mRNA-1273 showed VE 77% (95% CI, 63 to 86) against symptomatic infection and VE 89% (95% CI, 73 to 95) against hospitalization at least 14 days after 1st dose (VOC Beta/Gamma); VE 72% (95% CI, 57 to 82) against symptomatic infection and VE 96% (95% CI, 72 to 99) against hospitalization at least 14 days after 1st dose (VOC Delta).

ChAdOx1 showed VE 64% (95% CI, 60 to 68) against symptomatic infection and VE 85% (95% CI, 81 to 88) against hospitalization at least 14 days after 1st dose (VOC Alpha); VE 48% (95% CI, 28 to 63) against symptomatic infection and VE 83% (95% CI, 66 to 92) against hospitalization at least 14 days after 1st dose (VOC Beta/Gamma); VE 67% (95% CI, 44 to 80) against symptomatic infection and VE 88% (95% CI, 60 to 96) against hospitalization at least 14 days after 1st dose (VOC Delta).

Gazit

BNT162b2 showed VE 80% (95% CI, 73 to 85) at least 7 days after 2nd dose against infection in vaccinated

Test-negative study in Ontario 421,073 participants (same population as for Chung but extended to May 2021 and more detailed with respect to reporting of VOC); limitations in symptom collection; screening for VOC Alpha, Beta/Gamma and Delta varied during study period

Retrospective cohort of household members (household = 2 adults with no children) of a health management organization
<table>
<thead>
<tr>
<th>Day</th>
<th>Author(s)</th>
<th>Study Details</th>
<th>Vaccine Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Jara</td>
<td>Moderate</td>
<td>CoronaVac showed VE 65.9% (95% CI, 65.2 to 66.6) against infection and VE 86.3% (95% CI, 84.5 to 87.9) against death at least 14 days after 2nd dose.</td>
</tr>
<tr>
<td>50</td>
<td>Chemaitelly</td>
<td>Serious</td>
<td>mRNA-1273 showed VE 88.1% (95% CI, 83.7 to 91.5) and VE 100% (95% CI, 91.8 to 100) against infection by confirmed VOC Alpha at least 14 days after 1st and 2nd dose, respectively. mRNA-1273 showed VE 61.3% (95% CI, 56.5 to 65.5) and VE 96.4% (95% CI, 91.9 to 98.7) against infection by confirmed VOC Beta at least 14 days after 1st and 2nd dose, respectively. mRNA-1273 showed VE 81.6% (95% CI, 71.0 to 88.8) and VE 95.7% (95% CI, 73.4 to 99.9) against severe, critical, or fatal disease at least 14 days after 1st and 2nd dose, respectively (combined VOC Alpha and Beta).</td>
</tr>
<tr>
<td>51</td>
<td>Baum</td>
<td>Serious</td>
<td>BNT162b2 or mRNA-1273 showed VE 41% (95% CI, 25 to 54) against infection ≥ 21 days after 1st dose; BNT162b2 or mRNA-1273 showed VE 75% (95% CI, 65 to 82) against infection ≥ 7 days after 2nd dose in age 70+. BNT162b2 or mRNA-1273 showed VE 41% (95% CI, 17 to 58) against infection ≥ 21 days after 1st dose; BNT162b2 or mRNA-1273 showed VE 77% (95% CI, 65 to 85) against infection ≥ 7 days after 2nd dose in chronically ill (age 16-69). ChAdOx1 showed VE 24% (95% CI, -1 to 43) against infection ≥ 21 days after 1st dose in chronically ill (age 16-69).</td>
</tr>
<tr>
<td>52</td>
<td>Balicer</td>
<td>Serious</td>
<td>BNT162b2 showed VE 86.1% (95% CI, 82.4 to 89.1) against infection; VE 89% (95% CI, 43 to 100) against hospitalization 7 to 56 days after 2nd dose.</td>
</tr>
<tr>
<td>Study</td>
<td>Author</td>
<td>Vaccine</td>
<td>% Vaccine</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Too few events to report VE for severe disease or death.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Mateo-Urdiales</td>
<td>BNT162b2 (61%) or ChAdOx1 (31%) or mRNA-1273 (7%) or Ad26.COV2-S (0.6%)</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Goldshtein</td>
<td>BNT162b2 showed VE 78% (95% CI, 57 to 89) against infection at least 28 days after 1st dose.</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Mason</td>
<td>BNT162b2 showed VE 55.2% (95% CI, 40.8 to 66.8) and VE 70.1% (95% CI, 55.1 to 80.1) against infection 21 to 27 days and 35 to 41 days after 1st dose, respectively.</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Fabiani</td>
<td>BNT162b2 showed VE 84.1% (95% CI, 39.7 to 95.8) and VE 85.4% (95% CI, 35.3 to 98.4) against infection 14 to 21 days and ≥21 days after 1st dose, respectively. BNT162b2 showed VE 95.1% (95% CI, 62.4 to 99.4) against infection ≥7 days after 2nd dose in HCW.</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Chia</td>
<td>BNT162b2 or mRNA-1273 showed VE 92.7% (95% CI, 65.7 to 98.4) against severe disease (defined as requiring supplemental oxygen) > 14 days after 2nd dose.</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Kaur</td>
<td>Two doses of Covishield showed VE 87% (95% CI, 33 to 97) against severe disease when compared with one dose (timing of doses not reported).</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Pramod</td>
<td>Covishield showed VE 49% (95% CI, 17 to 68) against infection 21 days after 1st dose and VE 54% (95% CI, 27 to 71) against infection 14 days after 2nd dose. Covishield showed VE 58% (95% CI, 28 to 75) against symptomatic infection 21 days after 1st dose and VE 64% (95%</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Study</td>
<td>Results</td>
<td>Source</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>60</td>
<td>Carazo</td>
<td>BNT162b2 or mRNA-1273 showed VE 60% (95% CI, 53.6 to 65.5) against infection by confirmed VOC Alpha 14 days after 1st dose. BNT162b2 or mRNA-1273 showed VE 92.6% (95% CI, 87.1 to 95.8) against infection by confirmed VOC Alpha 7 days after 2nd dose.</td>
<td>Serious Test-negative study in Quebec, Canada; 58,476 participants; sample confirmed VOC Alpha; reported according to vaccine but not for Alpha at same time</td>
</tr>
<tr>
<td>61</td>
<td>Williams</td>
<td>BNT162b2 or mRNA-1273 showed VE 52.5% (95% CI, 26.9 to 69.1) against infection and VE 78.6% (95% CI, 47.9 to 91.2) against severe disease 14 days after 2nd dose in residents at LTCF. Two deaths in vaccinated residents but were palliative prior to infection. BNT162b2 or mRNA-1273 showed VE 66.2% (95% CI, 2.3 to 88.3) against infection 14 days after 2nd dose in staff at LTCF. None of the staff developed severe disease.</td>
<td>Serious Outbreak in a single LTCF in Ontario; 60 residents and 83 staff; sample confirmed VOC Gamma</td>
</tr>
<tr>
<td>62</td>
<td>Hitchings(2)</td>
<td>ChAdOx1 showed VE 33.4% (95% CI, 26.4 to 39.7) against symptomatic infection and VE 50.9% (95% CI, 33.6 to 63.8) against ICU admission and VE 61.8% (95% CI, 48.9 to 71.4) against death at least 28 days after 1st dose for 60+. ChAdOx1 showed VE 77.9% (95% CI, 69.2 to 84.2) against symptomatic infection and VE 89.9% (95% CI, 70.9 to 96.5) against ICU admission and VE 93.6% (95% CI, 81.9 to 97.7) against death at least 14 days after 2nd dose.</td>
<td>Critical Test-negative study in Sao Paulo, Brazil; 61,164 participants over age 60; time and setting for VOC Gamma</td>
</tr>
<tr>
<td>63</td>
<td>Tang</td>
<td>BNT162b2 showed VE 65.5% (95% CI, 40.9 to 79.9) against infection ≥14 days after 1st dose; BNT162b2 showed VE 59.6% (95% CI, 50.7 to 66.9) against infection ≥14 days after 2nd dose. BNT162b2 showed VE 100% (95% CI, not reported) against severe, critical or fatal disease ≥14 days after 1st dose; BNT162b2 showed VE 97.3% (95% CI, not reported) against severe, critical or fatal disease ≥14 days after 2nd dose.</td>
<td>Serious Test-negative study in Qatar; 1,140,337 participants; weekly random sequencing of positive samples for VOC Delta</td>
</tr>
</tbody>
</table>
mRNA-1273 showed VE 79.7% (95% CI, 60.8 to 89.5) against infection ≥ 14 days after 1st dose; mRNA-1273 showed VE 86.1% (95% CI, 78.0 to 91.3) against infection ≥ 14 days after 2nd dose.

mRNA-1273 showed VE 100% (95% CI, not reported) against severe, critical or fatal disease ≥ 14 days after 1st dose; mRNA-1273 showed VE 100% (95% CI, not reported) against severe, critical or fatal disease ≥ 14 days after 2nd dose.

BNT162b2 showed VE 42% (95% CI, 13 to 62) against infection 14 days after 2nd dose.

mRNA-1273 showed VE 76% (95% CI, 58 to 87) against infection 14 days after 2nd dose.

BNT162b2 or ChAdOx1 showed VE 64% (95% CI, 11 to 85) against infection unreported number of days after 2nd dose (Round 12: 2021-05-20 to 2021-06-07).

BNT162b2 or ChAdOx1 showed VE 49% (95% CI, 22 to 67) against infection unreported number of days after 2nd dose (Round 13: 2021-06-24 to 2021-07-12).

ChAdOx1 showed VE 85% (95% CI, 71 to 92) against infection 14 days after 2nd dose.

ChAdOx1 showed VE 23% (95% CI, not reported) against infection at least 21 days after 1st dose.

ChAdOx1 showed VE 60% (95% CI, 45 to 70) against infection at least 14 days after 2nd dose.

BNT162b2 showed OR 2.06 (95% CI, 1.69 to 2.51) for infection comparing

64 **Puranik**

65 **Elliot**

66 **Issac**

67 **Marco**

*Delayed exclusion – critical ROB

68 **Kale**

*Delayed exclusion – critical ROB

69 **Israel**

Serious Data-linkage study involving Mayo Clinic Health in USA; 25,859 matched triples from Minnesota only; time and setting for Delta at end of study time frame so only last month of data (July 2021) reported here

Serious Surveillance study in England; 121,872 participants; time and setting for VOC Delta; only included data from aged 18 to 64 years due to lowest risk for misclassification bias due to self-reported vaccination status

Serious Prospective cohort of HCW at a single hospital in India; 342 participants; time and setting for VOC Delta.

Critical Outbreak study of prison inmates in Barcelona; 217 participants (184 inmates); sequenced for VOC Alpha

Critical Prospective cohort of HCW at a single hospital in India; 1858 participants; sample sequenced for VOC Delta

Moderate Retrospective cohort of fully vaccinated (>14 days after 2nd dose)
<table>
<thead>
<tr>
<th>Page</th>
<th>Author</th>
<th>Study Details</th>
<th>Data Source & Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Gram</td>
<td>ChAdOx1 showed VE 44% (95% CI, 29 to 56) against infection 21 to 27 days after 1st dose. No deaths in vaccinated participants.</td>
<td>Serious Data-linkage study in Denmark; 5,542,079 participants; time and setting for VOC Delta</td>
</tr>
<tr>
<td>71</td>
<td>Pouwels</td>
<td>BNT162b2 showed VE 59% (95% CI, 52 to 65%) against infection ≥21 days after 1st dose and VE 78% (95% CI, 68 to 84%) against infection ≥ 14 days after 2nd dose (VOC Alpha age 18+).</td>
<td>Serious Survey of randomly selected private households with longitudinal follow-up in UK; 743,526 participants; also reported for 18-64 years; sample sequenced for VOC Alpha and VOC Delta</td>
</tr>
<tr>
<td>72</td>
<td>Abu-Raddad (2)</td>
<td>BNT162b2 after prior infection showed VE 85% (95% CI, 80 to 89) against re-infection compared to BNT162b2 without prior infection. mRNA-1273 after prior infection showed VE 15% (95% CI, -105 to 66)</td>
<td>Serious Retrospective matched cohorts (2) of fully vaccinated (>14 days after 2nd dose) in Qatar; 151,076 participants; sample sequenced for VOC Alpha and VOC Beta</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Study Description</td>
<td>Strength of Evidence</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>73</td>
<td>Gazit (2)</td>
<td>BNT162b2 showed OR 13.06 (95% CI, 8.08 to 21.11) against infection and OR 27.02 (95% CI, 12.7 to 57.5) against symptomatic disease compared to prior infection.</td>
<td>Moderate</td>
</tr>
<tr>
<td>74</td>
<td>Rosenberg</td>
<td>BNT162b2 (51%), mRNA-1273 (40%) or Ad26.COV2.S (9%) showed VE 91.7% against infection ≥14 days after 2nd dose (Week of May 3, 2021: VOC Alpha). BNT162b2 (51%), mRNA-1273 (40%) or Ad26.COV2.S (9%) showed VE 79.8% against infection ≥14 days after 2nd dose (Week of July 19, 2021: VOC Delta).</td>
<td>Serious</td>
</tr>
<tr>
<td>75</td>
<td>Al-Qahtani</td>
<td>BNT162b2 ≥14 days after 2nd dose, showed VE 99.9% (95% CI, 99.2 to 100) against ICU admission, and VE 99.5% (95% CI, 98.4 to 99.8) against death (VOC Alpha and Delta). ChAdOx1 ≥14 days after 2nd dose, showed VE 99.2% (95% CI, 97.6 to 99.7) against ICU admission, and VE 99.6% (95% CI, 97.2 to 100) against death (VOC Alpha and Delta). BBIBP-CorV ≥14 days after 2nd dose, showed VE 95.4% (95% CI, 94.6 to 96.2) against ICU admission, and VE 94.3% (95% CI, 93.1 to 95.4) against death (VOC Alpha and Delta). Sputnik V ≥14 days after 2nd dose, showed VE 100% (95% CI, 99.2 to 100) against ICU admission, and VE 99.5% (95% CI, 98.5 to 99.9) against death (VOC Alpha and Delta).</td>
<td>Serious</td>
</tr>
<tr>
<td>76</td>
<td>Goldberg (2)</td>
<td>BNT162b2 showed VE 50% (95% CI, 45 to 55) for those vaccinated in January 2021, and VE 73% (95% CI, 67 to 78) for those vaccinated in May 2021 against infection after the 2nd dose (VOC Delta age 16 to 39). BNT162b2 showed VE 58% (95% CI, 54 to 62) for those vaccinated in</td>
<td>Serious</td>
</tr>
</tbody>
</table>
January 2021, and VE 80% (95% CI, 71 to 86) for those vaccinated in May 2021 against infection after the 2nd dose (VOC Delta age 40 to 59).

BNT162b2 showed VE 57% (95% CI, 52 to 62) for those vaccinated in January 2021, and VE 75% (95% CI, 58 to 85) for those vaccinated in May 2021 against infection after the 2nd dose (VOC Delta age 40 to 59).

BNT162b2 showed VE 94% (95% CI, 87 to 97) for those vaccinated in January 2021, and VE 98% (95% CI, 94 to 99) for those vaccinated in March 2021 against severe, critical, or fatal disease after the 2nd dose (VOC Delta age 40 to 59).

BNT162b2 showed VE 94% (95% CI, 87 to 97) for those vaccinated in January 2021, and VE 98% (95% CI, 94 to 99) for those vaccinated in March 2021 against severe, critical, or fatal disease after the 2nd dose (VOC Delta age 60+).

BNT162b2 showed VE 86% (95% CI, 82 to 90) for those vaccinated in January 2021, and VE 91% (95% CI, 85 to 95) for those vaccinated in March 2021 against severe, critical, or fatal disease after the 2nd dose (VOC Delta age 60+).

77 **Herlihy**

Delayed exclusion – critical risk of bias

BNT162b2, mRNA-1273, or Ad26.COV2.S showed VE 78% (95% CI, 71 to 84) in Mesa County and VE 89% (95% CI, 88 to 91) in other Colorado counties against symptomatic infection an unreported number of days after 2nd dose (VOC Delta).

Critical

Surveillance report in Mesa County–Colorado, USA; 37,439 cases participants; sample sequenced for VOC Delta (43% to 88% during study period)

78 **Ghosh**

Delayed exclusion – critical risk of bias

ChAdOx1 showed unadjusted VE 75.2% (95% CI, 73.8 to 76.8) against infection ≥14 days after 1st dose, and unadjusted VE 54.6% (95% CI, 52.6 to 56.6) ≥14 days after 2nd dose against infection in HCW (VOC Alpha to Delta).

Critical

Retrospective cohort of Armed Forces HCW and frontline workers in India; 1,595,630 participants; time and setting for VOC Delta at end of study only.

79 **Amirthalingam**

BNT162b2 showed VE 77% (95% CI, 56 to 88) against symptomatic infection when 2nd dose given 19-29 days after 1st dose, and VE 94% (95% CI, 73 to 99) against symptomatic infection when 2nd dose given 85+ days after 1st dose (VOC Alpha age 80+).

Moderate

Test-negative study in England; time and setting for VOC Alpha (dominant before May 2021) and Delta (dominant after May 2021).
<table>
<thead>
<tr>
<th>Page</th>
<th>Author</th>
<th>Notes</th>
<th>Text</th>
</tr>
</thead>
</table>
| 80 | Butt (2) | | BNT162b2 showed VE 77% (95% CI, 66 to 85) against symptomatic infection when 2nd dose given 19-29 days after 1st dose, and VE 86% (95% CI, 70 to 94) against symptomatic infection when 2nd dose given 85+ days after 1st dose (VOC Alpha age 65 to 79).

ChAdOx1 showed VE 96% (95% CI, 72 to 100) against infection when 2nd dose given 19-29 days after 1st dose, and VE 88% (95% CI, 48 to 97) against infection when 2nd dose given 85+ days after 1st dose after 2nd dose (VOC Alpha age 80+).

ChAdOx1 showed VE 66% (95% CI, 47 to 77) against infection when 2nd dose given 19-29 days after 1st dose, and VE 73% (95% CI, 56 to 83) against infection when 2nd dose given 85+ days after 1st dose after 2nd dose (VOC Alpha age 65 to 79).

*Delayed exclusion – critical ROB

Unvaccinated participants had HR 2.84 (95% CI, 1.80 to 4.47) of severe disease compared to BNT162b2 ≥14 days after 2nd dose. | Critical | Case-control study in Qatar; 456 matched cases; time and setting for VOC Alpha |
|------|--------|-------|------|
| 81 | Fowlkes | | BNT162b2 (65%), mRNA-1273 (33%), or Ad26.COV2.S (2%) showed VE 91% (95% CI, 81 to 96) against infection ≥14 days after 2nd dose (during time of VOC Alpha).

BNT162b2 (65%), mRNA-1273 (33%), or Ad26.COV2.S (2%) showed VE 66% (95% CI, 26 to 84) against infection ≥14 days after 2nd dose (during time of VOC Delta).

BNT162b2 (65%), mRNA-1273 (33%), or Ad26.COV2.S (2%) showed VE 85% (95% CI, 68 to 93) against infection 14-119 days after full vaccination) and VE 73% (95% CI, 49 to 86) against infection ≥150 days after full vaccination (during time of VOC Alpha to Delta). | Moderate | Prospective cohort of HCW and other essential frontline workers in 6 states in the USA; 7,112 participants; updated report to cover VOC Delta period |
| 82 | Bhattacharya | | Covaxin (94%) and Covishield showed VE 83% (95% CI, 73 to 89) against |

Serious | Prospective cross-sectional cohort of HCW and their... |
<table>
<thead>
<tr>
<th>Study</th>
<th>Authors</th>
<th>Observations</th>
<th>Study Design</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>Nunes</td>
<td>BNT162b2 (45%) or mRNA-1273 (8%) showed VE 96% (95% CI, 92 to 98) against COVID-related death ≥14 days after 2nd dose (age 65 to 79). BNT162b2 (80%) or mRNA-1273 (2%) showed VE 81% (95% CI, 74 to 87) against COVID-related death ≥14 days after 2nd dose (age ≥80). BNT162b2 (80%) or mRNA-1273 (2%) showed VE 86% (95% CI, 68 to 93) against COVID-related death 14 to 41 days after 2nd dose and VE 74% (95% CI, 60 to 83) against COVID-related death ≥ 98 days after 2nd dose for HR 1.80 (0.77 to 4.25) (age ≥80).</td>
<td>Moderate</td>
<td>Data-linkage study of community-dwelling adults ≥65 in Portugal; 2,050,950 participants; time and setting for VOC Alpha to Delta</td>
</tr>
<tr>
<td>84</td>
<td>Tartof</td>
<td>BNT162b2 showed VE 75% (95% CI, 71 to 78) against infection 7 days after 2nd dose (confirmed VOC Delta). BNT162b2 showed VE 91% (95% CI, 88 to 92) against infection 7 days after 2nd dose (confirmed non-VOC Delta). BNT162b2 showed VE 93% (95% CI, 85 to 87) against infection 7 to 30 days after 2nd dose and VE 53% (95% CI, 39 to 65) against infection ≥ 127+ days after 2nd dose (confirmed VOC Delta). BNT162b2 showed VE 97% (95% CI, 95 to 99) against infection 7 to 30 days after 2nd dose and VE 67% (95% CI, 45 to 80) against infection ≥ 127+ days after 2nd dose (confirmed non-VOC Delta).</td>
<td>Moderate</td>
<td>Retrospective cohort of members of a health management organization in California; 3,436,957 participants; VOC Alpha to VOC Delta (only 28% confirmed Delta)</td>
</tr>
<tr>
<td>85</td>
<td>Li (3)</td>
<td>CoronaVac (combined with other inactivated vaccines) showed VE 59% (95% CI, 16 to 81.6) against symptomatic infection and VE 100% against severe infection ≥14 days after 2nd dose.</td>
<td>Serious</td>
<td>Test-negative study in Guangzhou, China; 366 participants; sample sequenced for VOC Delta</td>
</tr>
<tr>
<td>Page</td>
<td>Author</td>
<td>Critical</td>
<td>Surveillance study in 13 states in the USA; 615,454; time and setting for VOC Alpha to VOC Delta</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Scobie</td>
<td>*Delayed exclusion – critical ROB BNT162b2 or mRNA-1273 (92%), or Ad26.COV2.S showed VE 90% (95% CI not reported) against infection and VE 93% (95% CI not reported) against death ≥ 14 days after 2nd dose (April to June: VOC Alpha). BNT162b2, mRNA-1273, or Ad26.COV2.S showed VE 76% (95% CI not reported) against infection and VE 90% (95% CI not reported) against death ≥ 14 days after 2nd dose (June to July; VOC Delta>50%).</td>
<td>87</td>
<td>Satwik</td>
</tr>
<tr>
<td>88</td>
<td>Seppala</td>
<td>Serious BNT162b2 (74%) or ChAdOx1 (22%) or mRNA-1273 (10%) showed VE 84.4% (95% CI, 81.8 to 86.5) against infection ≥7 days after 2nd dose (VOC Alpha). BNT162b2 (74%) or ChAdOx1 (22%) or mRNA-1273 (10%) showed VE 64.6% (95% CI, 60.6 to 68.2) against infection ≥7 days after 2nd dose (VOC Delta).</td>
<td>89</td>
<td>Polinski</td>
</tr>
<tr>
<td>90</td>
<td>Chemaitelly (2)</td>
<td>Serious BNT162b2 or mRNA-1273 showed VE 46.6% (95% CI, 0.0 to 73.7) against infection ≥14 days after 2nd dose, VE 66.0% (95% CI, 21.3 to 85.3) ≥42 days after 2nd dose, and VE 73.9% (95% CI,</td>
<td>Retrospective cohort of immunosuppressed kidney transplant recipients in Qatar; 782 participants; time and setting for VOC Alpha and VOC Beta.</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Method</td>
<td>Summary</td>
<td>Type</td>
<td>Details</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>91</td>
<td>Hu</td>
<td>Inactivated vaccines showed VE 89% (95% CI, 55 to 98) against severe, critical, or fatal disease ≥14 days after 2nd dose (VOC Delta).</td>
<td>Serious</td>
<td>Outbreak report of hospitalized cases in China; 476 participants; PCR population for VOC Delta.</td>
</tr>
<tr>
<td>92</td>
<td>Andrews</td>
<td>BNT162b2 showed VE 62.7% (61.7 to 63.8) against symptomatic infection 1 week after 2nd dose and VE 47.3% (45.0 to 49.6) 20+ weeks after 2nd dose (VOC Delta).</td>
<td>Moderate</td>
<td>Test-negative study in England; 1,475,391 participants; VOC Alpha to VOC Delta (only data for VOC Delta reported here)</td>
</tr>
<tr>
<td>93</td>
<td>Patalon</td>
<td>BNT162b2 showed marginal VE 3% (95% CI, -5 to 10) against infection 0 to 6 days after 3rd dose and marginal VE 84.0% (95% CI, 79 to 88) 14 to 20 days after 3rd dose compared to 2 doses.</td>
<td>Moderate</td>
<td>Test-negative study in Israel comparing 2 doses of vaccine versus 3 doses of vaccine; 182,076 participants; time and setting for VOC Delta</td>
</tr>
<tr>
<td>94</td>
<td>Kissling</td>
<td>BNT162b2 showed VE 87% (95% CI, 74 to 93) against symptomatic infection 14 days after 2nd dose.</td>
<td>Serious</td>
<td>Test-negative study of adults ≥65 years in primary care setting in I-MOVE group (England, France, Ireland, the Netherlands, Portugal, Scotland, Spain and Sweden); 4,964 participants; sample sequenced for VOC Alpha.</td>
</tr>
<tr>
<td>95</td>
<td>McKeigue</td>
<td>BNT162b2 or mRNA-1273 showed VE 92% (95% CI, 85 to 96) against severe disease in people with no risk conditions and VE 72% (95% CI, 51 to 84) against severe disease in people</td>
<td>Serious</td>
<td>Case-control study of people with clinical risk conditions in Scotland; 50,935 participants; time and setting for VOC Alpha to VOC Delta</td>
</tr>
</tbody>
</table>
eligible for shielding at least 14 days after 2nd dose.

ChAdOx1 showed VE 94% (95% CI, 90 to 96) against severe disease in people with no risk conditions and VE 63% (95% CI, 46 to 75) against severe disease in people eligible for shielding ≥ 14 days after 2nd dose.

<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
<th>Design</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kertes</td>
<td>BNT162b2 showed OR 1.61 (95% CI, 1.45 to 1.79) for infection comparing fully vaccinated Jan to Feb vs fully vaccinated Mar to May.</td>
<td>Serious</td>
<td>Data-linkage study of people fully vaccinated 6 months previously in Israel; 1,423,098 participants; time and setting for VOC Alpha to VOC Delta</td>
</tr>
<tr>
<td>Barlow</td>
<td>BNT162b2 or mRNA-1273 showed VE 74% (95% CI, 65 to 82) against infection ≥ 14 days after 2nd dose.</td>
<td>Serious</td>
<td>Test-negative study in Oregon; 1000 participants; time and setting for VOC Delta</td>
</tr>
<tr>
<td>Chemaitelly</td>
<td>BNT162b2 showed VE 65.8% (95% CI, 63.8 to 67.7) against infection 5 to 9 weeks after 2nd dose; VE 29.7% (95% CI, 21.7 to 36.9) against infection 15 to 19 weeks after 2nd dose and VE 0% (95% CI, 0 to 0) against infection 20 to 24 weeks after 2nd dose.</td>
<td>Serious</td>
<td>Test-negative study in Qatar; 1,472,761 participants; time and setting for VOC Beta to VOC Delta</td>
</tr>
<tr>
<td>Thompson</td>
<td>BNT162b2 showed VE 90% (95% CI, 86 to 93) against ICU admission ≥14 days after 2nd dose.</td>
<td>Serious</td>
<td>Test-negative study of adults ≥50 years in the USA; 76,463 participants; time and setting for VOC Alpha</td>
</tr>
<tr>
<td></td>
<td>BNT162b2 showed VE 92% (95% CI, 88 to 94) against hospitalization at 28 to 41 days after 2nd dose and VE 86% (95% CI, 74 to 93) ≥112 days after 2nd dose.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 2: excluded studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akhrass</td>
<td>Delayed exclusion – Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Albahraei</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Alencar</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Alhamlan</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Alharbi</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Ali</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Alkhafaji</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Allen</td>
<td>Serious risk of bias</td>
</tr>
<tr>
<td>Almufty</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Apisarnthanarak</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Arashiro</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Ayass</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Baden</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Bailly</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Bajema</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Barchuk</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Bergwerk</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Bernal (2)</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Bjork</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Blaiszik</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Borobia</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Britton</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Brown</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Bruxvoort</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Butt</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Butt</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Butt (2)</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Cabezas</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Caillard</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Cavanaugh</td>
<td>Delayed exclusion – VOI not VOC</td>
</tr>
<tr>
<td>Charmet</td>
<td>Serious risk of bias</td>
</tr>
<tr>
<td>Chau</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Clemens</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Corchado-Garcia</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Dash</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>de Gier Brechic</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Domi</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Name</td>
<td>Details</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>El Sahly</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Ella</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>El-Sahly</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Falsey</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Farinholt</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Fisher</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Frenck</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Furer</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Geisen</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Gils</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Gorgels</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Gray</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Griffin</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Guijarro</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Gupta</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Gupta</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Haas (2)</td>
<td>Modelling study used to estimate cases averted</td>
</tr>
<tr>
<td>Hacisuleyman</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Hetemaki</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Hitchings(2)</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Hollinghurst</td>
<td>Serious risk of bias</td>
</tr>
<tr>
<td>Iliaki</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Iliaki</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Jacobson</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>John</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Jones</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Kaabi</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Kale</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Kaur</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Keegan</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Khan</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Khawaja</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Kojima</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Lamprini</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>LeFèvre</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Li</td>
<td>Phase 1 trial</td>
</tr>
<tr>
<td>Li (2)</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Ling</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Linsenmeyer</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Loconsole</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Luo</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Marco</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Author</td>
<td>Risk of Bias/Study Type</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mattar</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Mazgatos</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>McEvoy</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Menni</td>
<td>Serious risk of bias</td>
</tr>
<tr>
<td>Mizrahi</td>
<td>Modelling study</td>
</tr>
<tr>
<td>Monge</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Mor</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Moustsen-Helms</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Munitz</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Musser</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Mutnal</td>
<td>Vaccine effectiveness not reported</td>
</tr>
<tr>
<td>Nanduri</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Oduwole</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Olmedo</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Palacios</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Paris</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Pawlowski</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Perry</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Pilishville</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Piltch-Loeb</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Polinski</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Raches Ella</td>
<td>Phase 1 trial</td>
</tr>
<tr>
<td>Rana</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Regev-Yochay</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Riemersma</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Riley</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Rivelli</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Rovida</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Rudolph</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Salmeron Rios</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Sansone</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Scobie</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Sharma</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Shimabukuro</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Shrotri</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Starrfelt</td>
<td>Serious risk of bias</td>
</tr>
<tr>
<td>Swift</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Tande</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Tanriover</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Tenforde</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Tenforde (2)</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Thangaraj</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Author</td>
<td>Risk of Bias</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Thiruvengadam</td>
<td>Serious risk of bias</td>
</tr>
<tr>
<td>Thompson (1)</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Thompson (2)</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Vahidy</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Vasileiou</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Veneti</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
<tr>
<td>Victor</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Volkov</td>
<td>Modelling study</td>
</tr>
<tr>
<td>Voysey</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Waldhorn</td>
<td>Serious risk of bias</td>
</tr>
<tr>
<td>Wickert</td>
<td>Critical risk of bias</td>
</tr>
<tr>
<td>Williams (2)</td>
<td>Serious risk of bias</td>
</tr>
<tr>
<td>Young-Xu</td>
<td>Prevalence of variants unknown and suspected to be <50%</td>
</tr>
<tr>
<td>Zacay</td>
<td>Delayed exclusion – critical risk of bias</td>
</tr>
<tr>
<td>Zhong</td>
<td>Clinical outcomes of interest for this LES not reported</td>
</tr>
</tbody>
</table>
Appendix 2: Glossary

AZ: AstraZeneca

Alpha: variant of concern B.1.1.7

Beta: variant of concern B.1.351

Delta: variant of concern B.1.617.2

Gamma: variant of concern P.1

Epsilon: variant of concern B.1.427/B.1.429

HCW: Healthcare workers

LTC: Long-term care

LTCF: Long-term care facility

MOD: Moderna

Obs: observational study

OR: odds ratio

PF: Pfizer

RME: range of mean estimates across 2 or more studies

VE (Vaccine effectiveness): measure of how well a vaccine protects people from getting the outcome of interest in real-world practice (For example: VE of 92% against infection means that 92% of people will be protected from becoming infected with COVID and 8% of people will still be at risk of becoming infected with COVID)

VOC: variant of concern

VOI: variant of interest
Appendix 3: Data-extraction template

<table>
<thead>
<tr>
<th>Vaccine product</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>First author of study</td>
</tr>
<tr>
<td>Link</td>
<td>DOI or Pubmed ID</td>
</tr>
<tr>
<td>Date published</td>
<td>in format YYYY/MM/DD or preprint</td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>Funding</td>
<td>public or industry</td>
</tr>
</tbody>
</table>

Study details

<table>
<thead>
<tr>
<th>Study type</th>
<th>RCT/cohort/data-linkage/test-negative/case-control/other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveillance</td>
<td>routine screening Y or N</td>
</tr>
<tr>
<td>Population(s)</td>
<td>general public/LTC/Households/HCW/Other</td>
</tr>
<tr>
<td>Control group</td>
<td>not vaccinated, <7day vaccinated internal control, none, other</td>
</tr>
<tr>
<td>Total (N)</td>
<td>number of all study participants</td>
</tr>
<tr>
<td>Female</td>
<td>number or %</td>
</tr>
<tr>
<td>LTC</td>
<td>number or %</td>
</tr>
<tr>
<td>HCW</td>
<td>number or %</td>
</tr>
<tr>
<td>Households</td>
<td>number or %</td>
</tr>
<tr>
<td>>80</td>
<td>number or %</td>
</tr>
<tr>
<td>>70</td>
<td>number or %</td>
</tr>
<tr>
<td>>60</td>
<td>number or %</td>
</tr>
</tbody>
</table>

Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>outcomes separated by VOC type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes</td>
<td>confirmed infection/asymptomatic/mild symptomatic/severe symptoms/hospitalized/ICU/death</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st Dose VE</th>
<th>VE with 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days post 1st dose</td>
<td>days post 1st dose when VE provided</td>
</tr>
<tr>
<td>2nd Dose VE</td>
<td>VE with 95% CI</td>
</tr>
<tr>
<td>Days post 2nd dose</td>
<td>days post 2nd dose when VE provided</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rates per X person-days/years</th>
<th>vaccinated vs control</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>vaccinated vs control</td>
</tr>
<tr>
<td>RR</td>
<td>vaccinated vs control</td>
</tr>
</tbody>
</table>

Transmission

infection rates in unvaccinated contacts of vaccinated individuals

Critical appraisal

See Appendix 5
Appendix 4: Process for assigning Variant of Concern to studies

A Variant of Concern is considered to be the dominant (≥50%) strain in a study if any of the following conditions apply:

i) the authors make a statement about prevalence of VOC during the study time frame

ii) time and setting of the study is consistent with a VOC being dominant according to the following open tracking sources:

Outbreak Info. https://outbreak.info/location-reports
Appendix 5: Research question and critical appraisal process (revised 06 Oct 2021)

Review question:

<table>
<thead>
<tr>
<th>Participants</th>
<th>People at risk of COVID-19 (usually without but sometimes with previous COVID-19 infection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>COVID-19 Vaccine</td>
</tr>
<tr>
<td>Comparator</td>
<td>Unvaccinated people (*)</td>
</tr>
<tr>
<td>Outcomes</td>
<td>PCR-diagnosis of COVID-19 infection (**); symptomatic disease; hospital/ICU admission; death; transmission</td>
</tr>
</tbody>
</table>

(*) before-after studies, where the infection rate in the first 2 weeks after the vaccination are used as control are (**)

(**) commonly performed and may be appraised confirmation of specific variant, or reasonable evidence the variant was the dominant circulating strain

Critical Appraisal Process

We appraise the quality of the individual studies using an adapted version of ROBINS-I. This tool classifies the Risk of Bias of a study as Low, Moderate, Serious, Critical, or No Information. Low Risk of Bias indicates High Quality, and Critical Risk of Bias indicates Very Low (insufficient) Quality. ROBINS-I appraises 7 bias domains and judges each study against an ideal reference randomized controlled trial. To improve the utility of ROBINS-I for assessing studies reporting vaccine effectiveness, we have focused on study characteristics that introduce bias as reported in the vaccine literature. (WHO. Evaluation of COVID-19 vaccine effectiveness. Interim Guidance. 17 March 2021). Studies rated as “serious” or “critical” risk of bias will not be included in the Summary statements on Page 1-2 (exception: if limited data available for an outcome for a VOC). An overall judgement of “serious” or “critical” is given when the study is judged to be at critical risk of bias in at least one domain.

<table>
<thead>
<tr>
<th>VE Study Characteristics that may introduce bias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
</tr>
<tr>
<td>ROBINS-I: Bias in selection of participants into study</td>
<td>In cohort studies, people who get vaccinated may differ in health-seeking behaviour from people who do not get vaccinated; using a test-negative study design minimizes this type of bias</td>
</tr>
<tr>
<td>Examples and typical judgement:</td>
<td></td>
</tr>
<tr>
<td>• test-negative design with a clearly defined symptomatic study population (low)</td>
<td></td>
</tr>
<tr>
<td>• test-negative design (mixed or unclear study population) or case-control or cohort design or data-linkage with no concerns (moderate)</td>
<td></td>
</tr>
<tr>
<td>• cross-sectional design or case-control (concerns about whether controls had same access to vaccines/risk of exposure to COVID or unclear) or cohort design (concerns that exposed and non-exposed were not drawn from the same population) (serious)</td>
<td></td>
</tr>
<tr>
<td>Method for confirming vaccination</td>
<td>Questionnaires are prone to recollection bias; Population databases developed for purpose of tracking COVID vaccines minimize this type of bias</td>
</tr>
<tr>
<td>ROBINS-I: Bias in classification of interventions</td>
<td>Examples and typical judgement:</td>
</tr>
<tr>
<td>Databases used for retrieval of COVID test results, participant prognostic factors, and clinical outcomes</td>
<td>Assignment of infection start date</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Databases developed for collecting data on COVID are less prone to bias due to missing information and m</td>
<td>Using date of symptom onset (if within 10 days of testing) as infection start date reduces risk of misclassification bias (e.g., vaccinated participant who is reported as COVID+ may have been infected prior to receiving the vaccine or during non-immune period) and sensitivity of assays decreases over time</td>
</tr>
<tr>
<td>Examples and typical judgement:</td>
<td>Examples and typical judgement:</td>
</tr>
<tr>
<td>• database for non-COVID purpose but with individual level data (moderate)</td>
<td>• using a PCR positive test that was part of an ongoing standardized monitoring system (e.g., within a health network) (low)</td>
</tr>
<tr>
<td>• database for non-COVID purpose without individual level data (serious)</td>
<td>• using sample date without interview or documented confirmation of symptoms ≤ 10 days (relevant for symptomatic disease only) (serious)</td>
</tr>
<tr>
<td>• no or unclear description of database type (critical)</td>
<td></td>
</tr>
</tbody>
</table>

Databases used for retrieval of COVID test results, participant prognostic factors, and clinical outcomes

- Database linkage study (low)
- Questionnaire with confirmation by an additional method (e.g. registry) of at least a subset of study population (moderate)
- Questionnaire without confirmation by an additional method (serious)
- Estimating vaccination status based on surveillance data alone (critical)

Assignment of infection start date

- ROBINS-I: Bias in classification of interventions

Verification of symptoms

- ROBINS-I: Bias in classification of interventions

Examples and typical judgement:

- Examples and typical judgement:
- Examples and typical judgement:
<table>
<thead>
<tr>
<th>Accounting for non-immune period (first 14 days after first vaccine dose)</th>
<th>Reported absence of vaccine effect during non-immune period reduces risk of residual confounding bias</th>
</tr>
</thead>
</table>
| ROBINS-I: Bias due to confounding | Example/common case:
- presence of an effect during non-immune period or result not reported (moderate)
- unclear that non-immune period was considered (serious) |
| Inclusion of participants with prior COVID infection | Exclusion (or separate analysis) of participants with prior COVID infection reduces concern about differences in infectivity as well as risk-taking and health-seeking behaviour |
| ROBINS-I: Bias due to confounding | Examples and typical judgement:
- inclusion of prior infection status as a covariate in the models (moderate)
- previously infected not excluded or analyzed separately (serious) |
| Accounting for calendar time | Accounting for calendar time reduces bias due to differences in vaccine accessibility and risk of exposure over time |
| ROBINS-I: Bias due to confounding (time-varying confounding) | Examples and typical judgement:
- use of time-varying statistics without explicit mention of adjustment for calendar time (moderate)
- not taken into account but short-time frame (e.g. ≤2 months) (serious)
- not taken into account and time frame >2 months (critical) |
| Adjustment for prognostic factors | Adjustment for prognostic factors for COVID infection, severity of disease, and vaccination, such as age, gender, race, ethnicity, socioeconomic factors, occupation (HCW, LTC), and chronic medical conditions |
| ROBINS-I: Bias due to confounding | Examples and typical judgement:
- no or insufficient adjustment for occupation (or number of tests as a surrogate for exposure risk) - exception age>65 or LTCF resident (moderate)
- no or insufficient adjustment for socioeconomic factors (or neighborhood or income as a surrogate), race, ethnicity (serious)
- no or insufficient adjustment for age (any study population) or chronic medical conditions (LTC)(critical) |
| Testing frequency | Similar frequency of testing between groups reduces risk of bias introduced by detecting asymptomatic infection in one group but not in another (e.g. when only one group undergoes surveillance screening) |
| Examples and typical judgement: |
| |
| • no systematic screening but consistent methods for detection in one group vs. the other, e.g., within health networks (moderate) |
| • screening performed for a subset of both study groups (serious) |
| • screening performed routinely in one study group but not in the other (critical) |
Appendix 6: Detailed description of the narrative summary statement

We include studies with the following clinical outcomes: prevention of infection, severe disease (as defined by the study investigators), death, and prevention of transmission. These outcomes were selected because they are less susceptible to bias. If data are not available for these specific outcomes, but are available for symptomatic infection and/or hospitalization, data for these additional outcomes are provided temporarily. Studies reporting only antibody responses are excluded.

We aim at providing a lay language, standardized summary statement for each combination of vaccine and VOC for which we found evidence.

Where more than one study was found, we will provide a summary statement with a range of the estimates across the studies.

Where a single study provided data, we will provide the estimate plus 95% confidence interval for that study. As additional studies are added, the estimate plus confidence interval will be replaced by a range as described above.

In the summaries, “prevented” or “protects” will be applied to mean estimates or range of mean estimates that are greater than or equal to 50%.