

An introduction to economic modelling in the context of HTA

Presenters: Craig Mitton, Tania Conte, Pardis Lakzadeh, Gavin Wong

Host: COVID-END in Canada

September 21, 2021 – via Webinar

Outline

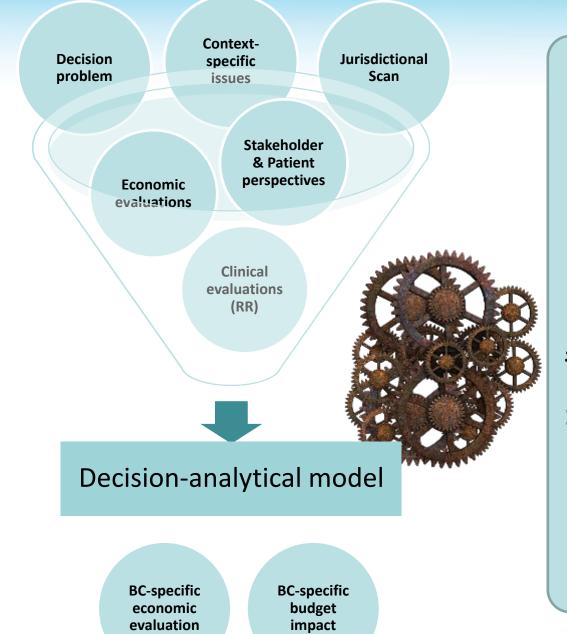
- Economic modeling & HTA (overview)
- Example: HTA process in BC
- Economic modeling process (five steps)
- Information base for the modeling
- Reviewing economic models
- Impact and summary

Decision analytic economic modeling and HTA

- In most cases clinical and economic evidence must be either transferred from one study population to another or combined and linked in some way – as such modeling becomes a viable option
- Decision makers must balance the costs and consequences of adopting or discarding a health technology based on the available data -> HTA Process
- HTA is a multidisciplinary process to evaluate the social, economic,
 organizational and ethical issues of a health intervention or health technology
- HTA has different parts (e.g., clinical effectiveness and economic evaluation) and different approaches (qualitative and quantitative including -> Decision-analytic methods)

Mathematical modeling in epidemiology

- Two main types of models in examining how infectious diseases progress through a population: deterministic and stochastic (accounts for chance variations)
- Based on assumptions around effectiveness of a given intervention (amongst other things) and thus validity is only as good as those assumptions
- Provides information as to which interventions to implement for how long, and have a place when empirical data can't be collected or prediction is required
- As we have seen with COVID modeling, these models can be updated regularly and can be an important part of the information base for public health responses
- All of that said, epidemiologic models are <u>NOT</u> the topic for today!


BC HTAC process and components

- New technologies and existing services (i.e., investment and reassessment)
 - Prioritization of topics by health technology assessment committee 8-10 member advisory council, 2 public members, 5 secretariat members
 - BC Ministry has a defined <u>set of criteria</u> used to score the technologies
 - Condition severity
 - Evidence of effectiveness (health and non-health benefits)
 - Ethical considerations
 - Underserved populations
 - Evidence of cost-effectiveness
 - Environmental impact
 - Implementation considerations
 - Risk Registry

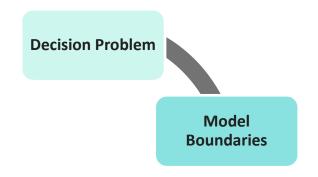
- 3 groups including C2E2 produce HTA reports (4-6 month process) for assessment by HTAC
- Public posting (review, redact, sign police communique, share publicly)

Time (4-6m) and resource (\$) Non-linear process constraints

Decision analytic modeling

- A decision-analytic model uses mathematical relationships to define and compare a series of expected consequences that would result from the set of interventions or decision options being evaluated, by synthesizing information from multiple sources
 - Common simulation techniques: discrete-event simulation (DES), Markov-Monte Carlo simulation, microsimulation, hybrid models
- To identify interventions that produce the greatest health care benefit with the resources available
- NOT a complete procedure for determining resource allocation decisions as it CANNOT incorporate all the values and criteria relevant to such decisions.

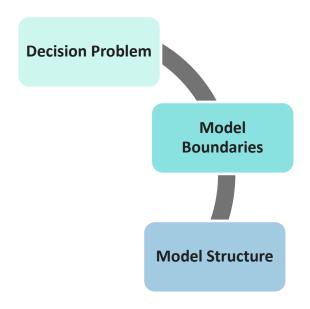
Decision analytic modeling


- Best understood as an aid in the complex decision making process and provides a framework for compiling clinical and economic evidence in a systematic fashion in <u>a sensible way</u> to reflect the context
- Alternative to trial based economic evaluation and is widely used, especially in situations where:
 - Lack of well-designed prospective, randomized, pragmatic cost-effectiveness studies that address the <u>specific decision-in-need</u>
 - A single trial might not compare all the available options, provide evidence on all relevant inputs, or be conducted over a long enough time to capture differences in economic outcomes (or even measure those outcomes).
 - Reliance on a single trial may mean ignoring evidence from other trials, meta-analyses, and observational studies

Decision Problem

Step 1: Specifying the decision problem

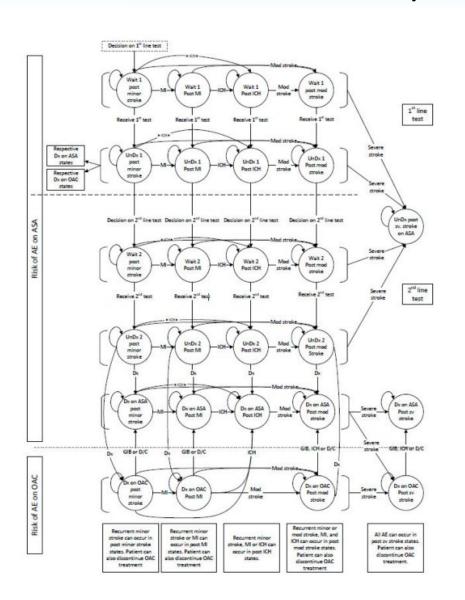
Policy Problem → Decision Problem

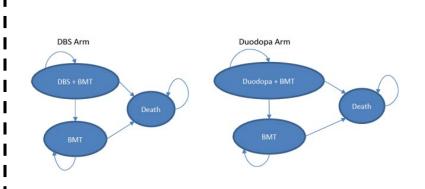

- Target population (s)
- The local context in which the technology will be used
- Defining options under evaluation
- Stakeholders/Institutions relevant to the decision making process

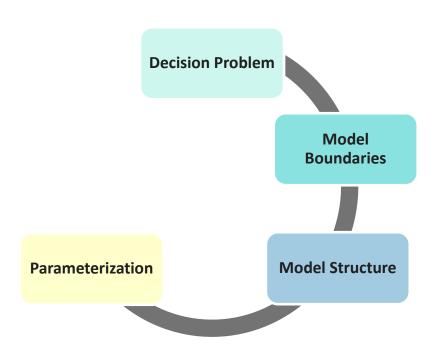
Step 2: Defining Model Boundaries

"Models are simplifications of reality"

- Specify consequences/outcomes which can be modeled.
- This process is informed by the availability and quality of clinical evidence to inform the treatment effect

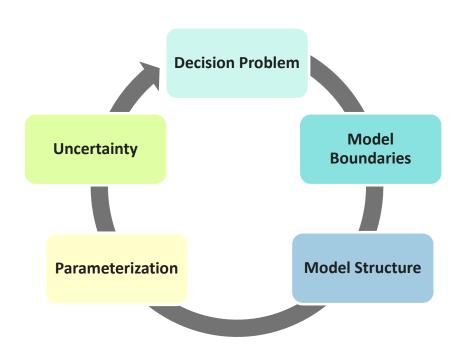

Step 3: Designing Model Structure


Reflect the underlying biological & clinical process in the model structure.


Key questions to consider:

- Chronic vs Acute disease?
- Does the risk of clinical events change over time?
- Does patient history matter?
- How was this clinical condition modeled before?

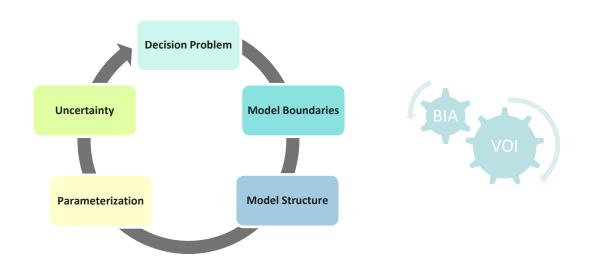
Models can be complex OR relatively simple



Step 4: Model Parametrization

Bring together all relevant evidence given the model structure

- Systematic identification of relevant evidence
- Clinical Evidence: synthesis where appropriate (ITC, NMA)
- Costing: Micro-costing vs. macrocosting



Step 5: Uncertainty

Uncertainty is present in all economic evaluations

- Apply appropriate methods to quantify the degree of uncertainty
- Probabilistic models addressing parameter & decision uncertainty

Use the modelling infrastructure to conduct additional analyses:

- What is the budget impact of adopting this new technology?
- Is it cost-effective to invest in more research given the specific policy question under evaluation?

Evidence synthesis for economic model

 The quality of evidence that goes into the model can have a profound effect on the output of the model

Important consideration for evidence

- The care pathway
 - The care pathway is useful to map out the journey of the patients and identify important outcomes that would change the trajectory of the patients.
- Type of outcomes
 - Prediction capability (e.g. Clinical outcomes vs. Surrogate outcomes)
 - Duration of observation (e.g. KM curve extrapolation)
- Hierarchy of evidence for main/primary treatment effect
 - 1. Systematic reviews (AMSTAR-2)
 - 2. RCTs (Cochrane Risk of bias tool 2.0)
 - 3. Comparative observational studies (Down and Black checklist, SIGN)
 - 4. Expert opinions

Overview

- When building an economic model, it's important to consider the quality of evidence that goes into the model
 - GRADE, RoB
- Use care pathway to identify important outcomes along the pathway (e.g. outcomes that can predict future events which changes the trajectory of the patients)
- Plan the economic analysis according to the quality of evidence and RoB
- Use risk of bias assessment to plan sensitivity analysis of the model

Reviewing economic models

 Consideration of data inputs, model structure and both internal and external consistency

REVIEW ARTICLE

Pharmacoeconomics 2006; 24 (4): 355-371 1170-7690/06/0004-0355/\$39.95/0

@ 2006 Adis Data Information BV. All rights reserved.

**Note: CHEERS checklist is *not* a critical appraisal tool only a reporting guideline

Good Practice Guidelines for Decision-Analytic Modelling in Health Technology Assessment A Review and Consolidation of Quality Assessment

Zoë Philips,^{1,2} Laura Bojke,² Mark Sculpher,² Karl Claxton^{2,3} and Su Golder⁴

- 1 School of Economics, University of Nottingham, Nottingham, UK
- 2 Centre for Health Economics, University of York, York, UK
- 3 Department of Economics, University of York, York, UK
- 4 Centre for Reviews and Dissemination, University of York, York, UK

Summary and impact

- Economic modeling is an important part of the HTA process that ideally has a broad set of social and economic criteria
- Modeling can be quite complex and usually requires specialized expertise
- Helpful to work directly with stakeholders early on and have regular check-ins
- Modeling relies on a sound evidence base; timing and project management paramount
- Well designed process can directly impact health system decision-making